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Abstract: Frequently in test, measurement and development, there is a requirement to compare
two or more supposedly identical data sets. These data sets may be acquired as: test data (does
the data set fall within a given level of conformance); validation data (do the results confirm the
applicability of a test methodology or design process); and calibration data (the data is required to
act as a benchmark against which other measurements will be assessed). An example of such data is
the far-field three-dimensional radiation pattern of antennas, which may be measured repeatedly on
the same or different antenna test ranges. The requirement for objective, quantitative and robust
methods of assessing such data, is discussed and confirmed. In addition, the constraints placed on
these assessment methods, applied by the nature of the measurement process and the measurand,
are highlighted and examined. Data sets that can be used to illustrate the application of these
comparison techniques are presented and a preliminary assessment of them made using previously
established techniques. These data sets embody a variety of subtle and specific characteristics that
stem from particular known error sources. The limitations of these established assessment
techniques are discussed and used to motivate the development of newer, more sophisticated
analysis, where the data sets are further processed to yield objective measures of comparison. A
variety of new assessment techniques that satisfy the aforementioned constraints are then presented
and their various merits are compared and contrasted to illustrate their applicability to the
classification and analysis of large data sets derived from near-field antenna measurements.

1 Introduction

Attempts to produce objective quantitative measures of
comparison between data sets, that can be used to assess the
accuracy, sensitivity and repeatability associated with the
production of such antenna data has been widely reported
[1–3].

The utility of such comparisons, or measures of
adjacency between data sets, lies not only in their ability
to determine the degree of similarity between various data
sets but also in their ability to categorise the way in which
these sets differ. Without the ability to produce such metrics
of similarity any assessment as to the integrity of a data set
is necessarily reduced to subjective value judgements.

A number of methods, some of which will be illustrated
in this paper, have been developed in signal analysis to
assess and quantify such differences. However, ongoing
advances in antenna measurements and the nature of the
data sets these advanced techniques produce requires the
development of new and novel assessment techniques.

2 The nature of the measurand

A classical interpretation of antenna characteristics based
on Maxwell’s equations is a suitable mathematical algo-

rithm in a large variety of different circumstances. However,
the limitations imposed by this scheme, particularly with
regard to the antinomy of the electron mass/energy and its
implications for radiation resistance [4], mean that this
interpretation of the action of antenna-to-antenna coupling
can have limited applicability.

For antenna patterns a more fundamental physical
interpretation, which concentrates on the irreversible
macroscopic process of measurement, can be useful in
assessing the process of radiative emission/absorption. The
Schrodinger wave equation, the Dirac equation, or
quantum electrodynamics (QED) can all be useful as
conceptual models when attempting to assess data sets
produced as a result of measuring antenna-to-antenna
coupling. This is because they all are empirically based
interpretations that concentrate on the process of measure-
ment prediction as opposed to the mechanism of electro-
magnetic interaction.

In this paper, only Tx and Rx antennas that are in
translational equilibrium will be considered and their
velocities relative to each other will be specified to be zero.
Additionally, the electromagnetic interactions will be
observed from an inertial reference frame coincident with
the fiducial mechanical datum of the Tx antenna. These
conditions make it possible to consider the antenna
characterisation without consideration of any relativistic
effects associated with a multiplicity of reference frames or
to any non-inertial effects. This simplifies the explanations,
without invalidating them in more complex situations, and
makes it possible to consider the measurement process in
terms of non-relativistic wave mechanics.

Here, the antenna pattern is described by electron-
photon-electron interactions that can only be specified
by the probability of interaction, where this resultant
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probability is formed by the superposition of complex
probability amplitudes. Thus, the antenna pattern, that is
classically considered as defining the relative power flux
density propagating to or from an antenna, is more
correctly described as the probability of discrete electron–
photon–electron interactions. Here, the probability of
interaction is given over known solid angles, relative to
the antenna under test (AUT) placed at the centre of the
inertial frame of reference. Consequently, the AUT pattern
can be legitimately interpreted as a frequency distribution
for these interactions that, when normalised to unity, can be
recognised as an angular probability density function
describing the process of electromagnetic interaction.

Previously, the comparison of such large data sets that
can be recognised as probability density distributions has
been significantly simplified by the techniques of statistical
pattern recognition [2]. The application of statistical
techniques is particularly appropriate to antenna patterns
as stated above when the nature of the pattern is not
constrained to the conventional classical interpretation, i.e.
is not restricted to being considered as an angular spectrum
of electromagnetic waves propagating in diverse directions.

Furthermore, the statistical approach has the inherent
advantage that it can be used to consider the global, i.e.
non-local, features of the data set and distils the complexity
of the pattern into an alternative, dimensionally reduced, set
of virtually unique features that can be utilised to describe
the data. This extraction of global features is of particular
relevance for antenna patterns as it takes account of the
inherently anti-reductionist and holistic nature of the
integral transforms that relate the aperture excitation to
the angular far-field pattern. The holistic nature of the
respective domains can be readily expounded, as a change
in any part of the spatial domain will result in a
corresponding change to every part of the spectral domain
and vice versa.

3 Partial scans

To illustrate the applicability of these data assessment
techniques to antenna measurements, a partial scan
technique, which attempts to reduce truncation errors in
near-field antenna measurements, will be simulated. This
measurement technique occupies a research area that
produces data sets that require detailed analysis to assess
its applicability and utility as a measurement process.
Moving the AUT between successive partial scans will
necessarily involve the disturbance of the reference path of
the RF subsystem and introduce further imperfections in
the alignment between the antenna and the range. It is the
impact of these imperfections that will be assessed.

In the absence of a detailed understanding of the
uncertainties associated with this technique, a number of
metrics have been produced to compare the results of this
partial scan process to more conventional near-field antenna
measurement techniques. A description of these partial scan
techniques described in [5] and its development is not the
purpose of this paper. However to illustrate the assessment
processes a number of such simulated measurements with
in-built errors were produced. These simulations were
designed to replicate the degree of misalignment between
adjacent scans that has been observed in practice. Figure 1
illustrates the particular tri-scan measurement process that
is to be examined using the simulations.

Hitherto, the purpose of measurement simulations has
been limited to the assessment of the relative merits of
various transformation algorithms and measurement con-
figurations. Here however, the simulation technique was

utilised to produce a series of measurement simulations that
could be used to yield a knowledge of the nature and
magnitude of two alignment errors that were thought to be
particularly pertinent to the auxiliary rotation partial scan
technique under consideration.

4 Measurement error simulations and their
conventional assessment

In the absence of some overriding definitive standard or
infallible model, the only practical methodology for
assessing the ability of any test facility to make measure-
ments is by way of repetition of these measurements. This
repetition can be accomplished without alteration in the
measurement configuration, to simply address repeatability
and precision, or with the inclusion of parametric variations
to assess sensitivity. The parametric variations can also be
used to assess the accuracy of the measurement if enough
thought is devoted to the nature and extent of the
parametric variations to be used, along with the types of
analysis that are to be employed in the assessment process.

As, in the absence of systematic error in a measurement
procedure, repeatability is itself inherently a statistical
process [6], the validity of any conclusions drawn will
greatly depend upon the size of the sample. Thus it is
preferable in this case to utilise as large a number of
simulations as is practical.

4.1 Simulation of partial scan plane
pointing error
Simulation software was modified to enable the specifica-
tion of angular and distance errors to partial scan
configurations. The magnitude of the angular error
introduced by the AUT positioner was estimated from
observations of the variation in the boresight direction
reported during active alignment correction verification
measurements, and was of the order of 70.021. These
azimuth, elevation and roll errors were then used in the
simulation of the acquisition planes.

The errors introduced into the alignment of the planes
were based on uniformly distributed pseudo random
numbers with a maximum range of plus or minus three
times the standard deviation of the pointing error observed
empirically. The use of a uniform distribution was though
to be preferable to the more commonly employed normal
distribution, as the former will inevitably produce a more
pessimistic set of simulations. Thus 99 measurement
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Fig. 1 Pseudo-colour plot of simulated near-field power for tri-scan
configuration
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simulations were produced all with different angular scan
plane pointing errors.

The assessment of each of these errors entailed the
simulation of the 99 tri-scan measurements, i.e. 297
individual partial planes. These measurement sets were
transformed to the far field using existing transformation
computer code assuming that the data sets contained no
imperfections in their alignment. Figure 2 contains overlaid
Ludwig III co-polar azimuth cardinal cuts from all of the
transforms.

Clearly, the pointing errors introduce pattern measure-
ment errors at all angles and at all levels in the far field. The
equivalent multipath error (EMPL) was calculated between
the ideal pattern and each of the error simulations. This can
be thought of as the amplitude necessary to force the
different pattern values to be equal. If no account is to be
taken of the phase of the patterns, as is often the case when
assessing far-field data, then the EMPL can be expressed in
terms of the amplitude of the samples as

EMPLjdB ¼ 20 log10
k E1ðy;fÞj � jE2ðy;fÞ k

2

� �
ð1Þ

Here, the factor of a half has been included as it is assumed
that the ‘correct’ value lies between the two measured
samples. The maximum EMPL, i.e. the worst case value at
each angle can be found plotted in Fig. 3 together with the
ideal cardinal cut.

The perfect alignment result plotted with the upper
bound EMPL value at each angle from all 99 simulations
shows that away from boresight, the EMPL seems to
demonstrate a good degree of correlation and that the error
term is proportional to the signal level. Although raising the
maximum EMPL to perhaps as little as 20dB below the
error free signal, the auxiliary rotation system shows a
degree of resilience to angular errors in the positioning of
the partial scans and is sufficiently resilient to avoid a
catastrophic break down. Thus, as its failure is gradual this
illustrates a degree of robustness that should be observed in
practice.

Other conventional measures of correspondence, not so
closely associated with antenna measurements, can also be
used to assess the alignment of the data sets. The peak
signal to noise ratio (PSNR) is used to measure the
difference between two data sets, where the elements have
values that lie in the range 0 � jIðiÞj � 1. The PSNR is
often given in decibel (dB) units, which can be used to
measure the ratio of the peak signal, 1V, and the difference

between two data sets I1ðiÞ and I2ðiÞ, using the formula

PSNRjdB ¼ 20 log10
1ffiffiffiffi

1

N

r PN
i�1
ðIiðiÞ � I2ðiÞÞ2

0
BBB@

1
CCCA ð2Þ

Clearly, when I1ðiÞ ¼ I2ðiÞ, for all values of i the two data
sets are identical, thus the PSNR in this case will be infinite.
Although there are several different definitions for the
signal-to-noise ratio, this choice is commonly employed for
the purposes of digital image processing. For the simulated
angular errors calculated above this produces the results
summarised in Fig. 4.

Here, the calculations for the 99 cases have been
displayed on the same plot and, for ease of observation,
a solid line has been used to join the calculated values. If
two signals, such as antenna patterns, vary similarly point
for point then a measure of their similarity may also
be obtained by taking the sum of the products of the
corresponding pairs of points. If the two sequences of
numbers are independent and random, the sum of the
products will tend to zero as the number of pairs of points is
increased to infinity, as all numbers positive and negative
are equally likely. If however, the sum is finite and non-zero
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this will indicate a degree of correlation. A negative result
will occur if one sequence increases as the other decreases.
Thus, the cross-correlation coefficient r between two data
sequences I1 and I2 of equal length can be expressed as

r ¼ 1

N

XN

n¼1
I1ðnÞI2ðnÞ ð3Þ

The 1/N term is included in the definition of the cross-
correlation to insure that the result is independent of the
number of sampled points. Unfortunately however, the
value of the correlation coefficient will greatly depend upon
the absolute values of the respective data sets. This can be
overcome by normalising the coefficient to the range
�1 � r � 1. This in turn can be accomplished by normal-
ising the cross correlation coefficient by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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n¼1
I21 ðnÞ
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I21 ðnÞ

 !
�
XN
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I22 ðnÞ

 !vuut ð4Þ

Thus, the normalised correlation coefficient can be
expressed as

r ¼

PN
n¼1

I1ðnÞI2ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

I21 ðnÞ
� �

=
PN
n¼1

I22 ðnÞ
� �s ð5Þ

This is usually known as a cross-correlation coefficient and,
as shown above, it is normalised so that its value always
lies in the range �1 � r � 1, where +1 implies perfect
correlation, 0 signifies no correlation and –1 represents
opposite signals, i.e. signals out of phase by pi.

Figure 5 shows the correlation coefficients for the 99
angular error data sets where again the data points have
been joined by a solid line for ease of observation.

4.2 Simulation of AUT-to-probe separation
error
Range length errors were modelled in the same fashion as
the angular errors. However, the maximum variation was
determined from an error analysis of the fabrication and use
of the AUT mechanical positioner. A further 99 measure-
ment simulations were generated, transformed to the far

field, and plotted. Cardinal cuts can be seen overlaid in
Fig. 6.

Figure 6 appears to illustrate that the errors associated
with the probe separation error are of limited angular
extent, centred about angles that correspond to directions in
which similar strength signals are combined from the
different acquisition planes. Additionally, the error becomes
smallest for angles that are derived primarily from the signal
associated with a single scan. Inevitably, such interference
effects are at wide angles where the overall signal strength is
reduced.

Figure 7 again contains the perfect alignment result
plotted with the maximum EMPL value at each of the
angles from all 99 simulations. This clearly confirms that the
greatest errors are observed over a limited wide-out angular
range. Although raising the EMPL to perhaps as little as
10dB below the error free signal at 7601, the auxiliary
rotation system was again sufficiently resilient not to break
down. Again, its failure is gradual, illustrating a degree of
robustness that should be observed in practice.

Unfortunately, although the EMPL is useful for high-
lighting differences between patterns and measurement
errors, it fails to deliver a single quantitative metric of
similarity between patterns that can be used to determine
which of these different phenomena is most important.
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Fig. 5 Correlations for the 99 angular errors
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As for the angular errors, the PSNRdB and cross-
correlation can also be calculated for the simulated down
range error antenna patterns, and these are shown as Figs. 8
and 9.

4.3 Summary of conventional techniques
All of the above conventional techniques have advantages
and limitations associated with them, primarily as they are
all designed to produce comparisons of data sets that do not
share the characteristics of antenna patterns.

The EMPL level is an easily evaluated metric that is
conceptually simple as broadly, it represents the size of
signal required to make the two different signals the same.
Thus, this technique is highly sensitive to the presence of a
constant displacement between the comparison data sets.
However, if necessary, phase information can be taken into
account by taking the difference between the respective
complex voltages.

It is often used to represent the uncertainty associated
with a given data set, i.e. analogous to an error bar. The
principle limitation of this technique is that it fails to
produce a single, or small number, of coefficients that can
be used to describe the data set. Instead, it produces a value
for each element in the comparison data sets. This not only
results in the EMPL having to be presented graphically, but
also requires that the comparison data sets should contain

an equal number of elements, although this difficulty can
often be resolved with the use of interpolation.

As this is a local interval assessment technique, the results
are, often sensitive and discontinuous obscuring subtler
underlying features. Such effects can be mitigated by
smoothing, i.e. by taking a ‘boxcar average’, although this
is undesirable as the fidelity of the response is compromised.

The PSNR is a measure often employed to assess the
difference between two digital images. PSNR is the ratio of
the largest signal to the arithmetic root mean square of the
differences between the respective data sets, and as such the
presence of a constant offset between data sets will
dominate the value of the PSNR. For the case of antenna
measurements, an accurate absolute reference can only be
obtained by way of a gain calibration, which is difficult and
often inaccurate.

Although the PSNR approach yields a single coefficient,
it has the complication of having an infinite range, i.e.
0 � k �1, when expressed in dB. In practice, this metric is
found to be enormously sensitive with patterns that are
essentially very similar yielding differences, as can be seen in
Figs. 4 and 8, of as much as 20dB. Although this technique
is global i.e. it takes account of differences between every
part of each data set it fails to take account of phase
information and as it is a purely interval technique, it is
sensitive to the influence of outlying points. Finally, the
evaluation of the PSNR requires that the respective data
sets contain the same number of elements.

The cross-correlation coefficient is a computationally
expensive, general-purpose technique for obtaining a single
quantitative, correctly normalised measure of adjacency; the
technique is often used to calibrate time delays or offsets
between theoretically identical signals. For the case of
antennas, this would equate to determining the pointing
error of a known antenna pattern function.

Again, it is a holistic metric although unlike the previous
techniques, zero padding the smaller data set can accom-
modate data sets of differing sizes. The cross-correlation
coefficient can take account of amplitude and phase data,
provided that the data sets are represented in rectangular
form. However, as it is a purely interval technique that
essentially relies upon a summation process, it is both
potentially numerically unstable and sensitive to the
presence of outlying points. In practice, minor differences
between otherwise similar patterns are not well discrimi-
nated, as for the case of the simulations presented above
where the differences were mainly reported in the third
decimal place.

5 Novel measures of correspondence

The measured and simulated data sets are complex and the
integral transforms that are used on them are holistic. This
suggests that assessment methods that are based on
extracting features from the patterns that are universal to
the entire pattern, as opposed to specific to localised areas,
would be useful in the assessment process. Therefore, the
identification of pattern features that are a function of the
entire pattern that can then be analysed to calculate a
measure of comparison or adjacency in the feature space are
desirable.

5.1 Interval measures
A statistical interval measurement of correspondence based
on calculating the moments of the antenna pattern when it
is treated as a probability distribution has already been
reported [2]. Moments of a probability density function
describing area, centroid, variance, kurtosis and skewness
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yield 15 numerical values that characterise the data. These
calculated numerical values effectively dimensionally reduce
the data set to 15 numbers which represent 15 global or
universal features of the entire pattern.

Viewing these 15 variables in a fifteen dimensional feature
space yields a vector, and comparison of two such vectors
will enable comparison of the two data sets. The technique
used here is to construct an orthogonal vector to the first
data set and then take the dot product with the second to
form the comparison. Here, if they are exactly the same the
dot product will be zero. The vector’s modulus and
argument form the comparison of similarity between the
two patterns. Figures 10 and 11 illustrate the calculated
error vectors plotted on a feature plane from the interval
moment assessment method, for the angular error and
range length error simulations, respectively.

The central region of Fig. 10 aligns closely with that of
Fig. 11, but the large values of EMPL associated with the
angular errors extend the error points through the error
vector space to produce a more extended trajectory through
it. This is expected, as the error terms obtained during the
range length analysis were located principally in regions of
small field intensity. This trajectory appears to be related

both to the extent of the angular nature of the errors, and to
the shape of the underlying pattern.

In this methodology of comparison, all of the moments
are given the same weight irrespective of the fact that they
are calculated from a series of moments that are higher and
higher powers of the co-ordinates of the data points in the
angular pattern. If required, as with antenna measurements,
the calculated moments can be normalised, with respect to
the moments of the pattern of a gain standard, which can
then be used to scale the calculated moments relative to the
gain standard prior to comparison.

However, there are two specific aspects of the measure-
ment methodology that handicap any interval pattern
assessment of antenna patterns produced by near-field
scanning:

� the very high dynamic range of the measurement system;

� the interferometric nature of the measurement and the
lack of uniformity of the reference source.

Both of these mean that interval assessment of the data
sets can lead to misleading results; as such, an interval
methodology depends on absolute signal levels, while the
measurement technique is based on relative interferometric
test and reference signal level measurements.

5.2 Ordinal measures
An ordinal measure of association that overcomes this
limitation can be derived if the interval nature of the data is
ignored. If ranked in terms of the amplitude, all antenna
data sets sampled over the same intervals and containing
the same number of elements are bijections between the set
and itself, i.e. permutations of the same elements [7]. The
only possible variation is in where these elements are to be
found in the data sets and therefore, the 2� 99 data sets all
represent different permutations of the same data. Thus, it
is the similarity of the permutations that is assessed and by
inference, also the data from which the permutations are
constructed.

This provides the opportunity to construct a measure of
association based on the inverse permutation of data sets
with respect to each other. This will produce a metric of
correspondence that is immune to many of the pathological
inconsistencies of such large interval data sets.

Any proposed objective measure of correlation, or
association, between data sets based on this methodology
would be desired to be:

� a single coefficient, independent of scaling or shift due to
the differences in reference levels,

� insensitive to the large dynamic range of the data,

� normalised, i.e. give correlation value ranging between –1
and 1, and finally,

� symmetrical or commutative to the operation of
correspondence.

If we assume a suitable methodology for defining a single
coefficient and normalising it between –1 and +1 can be
found. As the range of values in the permutation is limited
to the number of elements in the set, the dynamic range is
also limited but not restrictive. Additionally, permutations
mirror Abelian symmetry under a group operation [7], and
therefore are by definition symmetrical and commutative.
Thus, such a measure of association based on the
correlation of the permutations derived from the data sets
is possible.
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Within the image processing community such a measure
has already been devised and implemented [8] and it can be
applied to the assessment of antenna patterns [3]. Following
the development of [8], this measure is expressed in terms of
a rank permutation which is obtained by sorting the data in
ascending order and then labelling each element with
integers accordingly, i.e. ½1; 2; 3; . . . ; n� where n is the
number of elements in the set.

The correlation between two rankings can be considered
to constitute a measure of closeness, or distance. For a set of
amplitude values I1 and I2, let p1 be the rank of element I i

1

among I1 and p2 be the rank of element I i
2 among I2. If the

ranks are not unique, i.e. two elements have the same value,
then the elements are ranked so that the relative spatial
ordering between elements is preserved. A composition
permutation s is defined such that si is the rank of the
element in I2 that corresponds to the element with rank pi

1

in I1. Hence, for the case of a perfect positive correlation,
s ¼ ð1; 2; 3; . . . ; nÞ, where n is the number of elements in the
set.

The definition of a distance metric to assess the distance
between s and the identity permutation u ¼ ð1; 2; 3; . . . ; nÞ
will result in a measure of the distance between p1 and p2.
The distance vector di

m at each si is defined as the number of
sj where j¼ 1; 2; 3; . . . ; i which are greater than i. This can
be expressed as

di
m ¼

Xi

j¼1
Jðsj4iÞ ð6Þ

where JðBÞ in an indicator function which is defined as

JðBÞ ¼ 1 whenB true
0 whenB false

�
ð7Þ

Here, di
m can be thought of as a measure of the number and

the extent to which the elements are out of order. If I1 and
I2 were perfectly correlated, then the distance measure will
become a vector of zeros, i.e.

dmðs; uÞ ¼ ð0; 0; 0; . . . ; 0Þ ð8Þ
Several examples of this process can be found in the
Appendix. The maximum value that any component of this
distance vector can take is n=2, which occurs for the case of
a perfect negative correlation. Finally, a coefficient of
correlation can be obtained from the vector of distance
measures as

kðI1; I2Þ ¼ 1� 2maxn
i¼1 di

m

n=2
ð9Þ

Here, if I1 and I2 are perfectly correlated, then ðs ¼ uÞ and
k ¼ 1. When I1 and I2 are perfectly negatively correlated,
then k ¼ �1.

The ordinal coefficient of correlation k was computed
between the reference data set and each of the results from
the error simulation contained in Figs. 2 and 3. Each of
these 99 coefficients can be found as the solid line in Fig. 12.
For the sake of clarity, the discrete k values are presented in
terms of a line graph. Table 1 contains the mean value,
median value, standard deviation and 99% confidence
interval for the range of k values obtained for the angular
error simulations.

This operation was repeated for the simulations based
upon range length errors. The ordinal coefficient of
correlation k was computed and the results can be found
presented as the solid line in Fig. 13. The mean value,
median value, standard deviation and 99% confidence
interval for the ranges of k values obtained are shown in
Table 2.
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Fig. 12 Plot of ordinal k and modified interval-ordinal k as a
function of simulation for angular errors

Table 1: k values for azimuth cut of angular error simula-
tions

Metric k

Mean 0.8132

Median 0.8160

Standard deviation, s 0.0879

3s (99% confidence level) 0.2638
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Fig. 13 Plot of ordinal k and modified interval-ordinal k as a
function of simulation for range length errors

Table 2: k values for azimuth cut of range length error
simulations

Metric k

Mean 0.8758

Median 0.8800

Standard deviation, s 0.0546

3s (99% confidence level) 0.1638
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The results of the ordinal measure clearly show that the
small but systematic errors introduced into the simulations
can be accurately quantified in the calculation of the k
value. However, from Figs. 2 and 3 it is clear that the
angular distribution of errors is independent of far-field
angle for the angular error case whilst it is correlated to
specific far-field angles for the range length case, cf. Figs. 6
and 7.

The ordinal process of ranking the data to produce
permutations takes no account of either the absolute
amplitude or spatial angles at which the data is found;
thus, every region of the pattern is judged to be equally
important in the calculation of k. This is clearly illustrated
by comparison of the mean average values of k determined
from the two different error simulations.

To differentiate between errors that are not uniformly
located across the data sets some method of isolating the
effects of these localised errors must be established. In Fig. 7
the maximum EMPL is located around specific angles
relative to boresight and seems to be at distinguishable
amplitudes relative to boresight. Therefore, any process that
distinguishes between areas in the pattern in terms of spatial
angle or relative amplitude could be used to modify the data
prior to ranking, so that the resultant permutations would
be biased to reflect these localised areas in the patterns.

By inspection of Fig. 7 it is clear that the differences
observed equate to lower signal levels than those in Fig. 3.
However, this is not reflected by a significant difference in
their respective k values.

5.3 Ordinal interval (hybrid measures)
The ordinal measure of association can be readily modified
to take account of different regions of interest by re-
tabulating the data in such a way as to attribute more
samples to regions of greatest interest prior to ranking the
data. This approach minimises the impact of numerical
instabilities as observed when using a purely interval
assessment technique, but produces a permutation that is
weighted to take more account of the specific property of
the patterns that is judged to be important, i.e. higher signal
levels.

Assuming that the patterns are sufficiently well sampled,
this can readily be determined for the case of antenna
radiation patterns. Such a re-tabulation can be accom-
plished rigorously through the application of the sampling
theorem i.e. Whittaker interpolation. Alternatively, this can
be performed efficiently albeit with approximation, using
piecewise polynomial functions, i.e. cubic spline or cubic
convolution interpolation.

The solid trace in Fig. 12 contains results from calcula-
tions of the k value pertaining to the angular error
simulation. The dotted trace represents the k values
obtained from the hybrid ordinalinterval technique where
the data was re-tabulated so that more samples were
attributed to regions of larger field intensity.

Figure 13 contains similar data obtained from the range
length error simulation. This illustrates that the hybrid
technique is better able to isolate errors in the data sets that
display amplitude specific traits. The mean hybrid coeffi-
cient k for the angular error simulation was 0.6395 whereas
that obtained from the range length simulation was 0.8113,
reflecting the greater impact of angular errors in regions of
higher field strengths around boresight.

From the Figures, it can clearly be seen that the extent to
which the hybrid interval-ordinal method discriminates
between differences in elements corresponding to signal
magnitudes can be readily varied on a case-by-case basis,

to emphasise or de-emphasise the particular feature under
investigation.

The ordinal and hybrid interval-ordinal methodologies
both overcome many of the disadvantages displayed in
traditional and novel interval assessment strategies but they
do place constraints on the types of data sets that can be
compared. The comparison of permutations requires the
two data sets to be, either identical in terms of sampling
interval, extent and number of data points, or for it to be
possible to interpolate the sets to arrive at a situation where
these conditions hold. For complex multidimensional data
sets containing many different angles and frequencies this is
often impossible.

5.4 Categorical ordinal (hybrid measures)
Some of these difficulties can be overcome and different
data set structures can be compared if, prior to the ordinal
assessment, the data sets are categorised and then the
relative frequencies associated with the categorisation are
the subject of the ordinal measure of correspondence.

Although there are a great many ways of categorising a
given data set, one of the simplest is to divide the interval
data set into a number of amplitude bins and to count how
many elements fall within each bin, i.e. a categorical interval
methodology. Each data set that is compared will provide a
single histogram that can be normalised before subsequently
being processed to provide the measure of correspondence.
Normalisation would usually be accomplished by ensuring
the total summation of the frequencies of the two sets to be
compared was equal while the relative frequencies for the
bins in each data set remained constant.

The level and size of the bins can be arbitrarily chosen.
This enables a preference to be made as to what is to be
emphasised, i.e. the bins can be distributed in a non-linear
fashion. Thus, more bins can be used for large signals than
for small signals or vice-versa. In the limit, when the bins are
sufficiently small and sufficiently numerous, their will be
one bin per distinguishable amplitude. For double-precision
arithmetics the floating-point accuracy is approximately
10�12. Figures 14 and 15 contain the histograms obtained
from two typical far-field pattern functions when expressed
linearly.

As is clear from these Figures, the histograms are poorly
distributed with most of the samples occupying only a small
number of bins. Clustering such as this can be resolved
by redistributing the bins. Figures 16 and 17 contain
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Fig. 14 Histogram of two-dimensional reference pattern function
(reference data set)
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histograms from the same data sets. However, the bins have
been chosen so that they are linearly distributed on a
logarithmic scale. Here, the interval data set has been
divided into 101 bins that spanned from –70dB to 0dB.
The spread of these histograms can be readily increased by
narrowing the interval of the bins, and/or increasing the
number of bins used.

This categorical process yields a histogram vector of 101
elements that can be readily compared with another vector
using the ordinal measure of adjacency detailed above.
For these data, sets the ordinal measure of association
k was 0.44.

6 Summary of novel techniques

The interval statistical image classification technique is
highly sensitive which in part results from the huge dynamic
range inherent in the data, and in part from the use of large,
i.e. up to fourth order, statistical moments. Unfortunately,
although the technique is holistic it yields two values per
comparison and is particularly sensitive to the influence
of outlying points. Furthermore, pronounced differences
between patterns can result in numerical instabilities
resulting in the two co-ordinates of the feature plane
differing by more than six orders of magnitude. Such
numerical instabilities can in part be resolved by normal-
ising the moments with respect to a calibration standard,
i.e. reference antenna, whereby each of the moment vector
components becomes equally important. On the positive
side of the balance sheet, statistical image classification can
be embodied within a very efficient algorithm that is easily
evaluated on a digital computer.

The ordinal measure of association yields a single
quantitative, normalised coefficient that has in practice
been found to be extremely robust. However such
robustness tends to render the technique insensitive to
smaller differences, particularly to ‘textures’ within the
pattern, i.e. to subtitles within the overall pattern.

Unlike its interval counterpart, the calculations required
to determine the coefficient k are somewhat lengthy, even
for relatively small data sets. As this technique relies purely
upon the order of the elements within the respective data
sets, differences between large signals are as equally
important as similar differences between small signals, and
in practice, this can render the technique sensitive to the
presence of noise.

The hybrid technique takes account of the interval
aspects of the data set by apportioning a greater number of
samples to regions of greatest interest whereupon the
modified data sets are compared using the ordinal measure
of association discussed above. For example, this re-
tabulation process enables the influence of low-level noise
to be suppressed, i.e. the presence of large differences
between small signals on essentially identical data sets to be
suppressed, whilst retaining all of the advantages of the
interval assessment technique.

It therefore allows more detailed characterisation and
classification of specific error sources in the measurements,
allowing the interval nature of the data to influence the
ordinal permutations that are abstracted from the data.
Furthermore, the technique can similarly be extended to
take greater account of data occupying particular angular
regions of space. Thus, the comparison process can be
tailored to characterise specific error sources in the
measured data sets and to assess their importance.

The principle advantage of categorisation prior to
processing with the standard hybrid interval-ordinal
technique, lies within the fact that a histogram can be

0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

level, V

oc
cu

rr
en

ce

Fig. 15 Histogram of two-dimensional reference pattern function
(comparison data set)
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Fig. 16 Histogram of two-dimensional reference pattern function
(reference data set)
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Fig. 17 Histogram of two-dimensional reference pattern function
(comparison data set)
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made of data sets that contain different number of elements.
Additionally it is automatically able to compare two-, three-
or higher-dimensional data sets. Furthermore, as the
comparison technique is often complicated by the large
amounts of data present within the respective data sets,
as the histograms can be made to be of arbitrary size,
the efficiency of the comparison process can be greatly
improved.

However, as the technique essentially compares two
histograms, any ambiguity within the histogram representa-
tion of the data set will constitute an ambiguity in
the correlation process. One potential weakness can be
illustrated by examining the histograms obtained from
the patterns contained in Fig. 18.

Figure 18 contains two traces that represent essentially
the same data sets, only the order in which the elements are
stored has changed, i.e. they are permutations of each other
and could be effectively assessed via the ordinal or interval
ordinal technique. However, as the values contained within
the elements of set 1 and set 2 are identical, the histograms
formed from these respective data sets will also be identical,
as shown in Fig. 19.

As pattern functions 1 and 2 contain the same data the
resulting histograms will be essentially identical, i.e. all of
the elements of the histogram of set 1 will be the same as all
of the elements of set 2 and thus

½h1� � ½h2� ¼ ½0�

This insensitivity to direction is both the principle weakness
of the histogram technique and consequently, the principle
weakness of any comparison technique based upon it. The
impact of such insensitivity will depend primarily upon the
characteristics of the patterns being compared. However,
a hybrid approach combining correlation and ordinal
techniques offers promise here.

The principal differences between the various non-local
distance metrics can be found summarised in Table 3.

7 Discussion and conclusions

Two principle sources of error within ‘auxiliary rotation
partial scan near-field measurement systems’ have been
modelled. The effects of these errors on the far-field vector
pattern functions have been analysed using conventional
metrics of determining measurement repeatability, and their
shortcomings have been noted.

The far-field patterns have then been reassessed using
three existing statistical techniques that consider the
interval, ordinal and categorical aspects of the data. An
interval technique based on the calculation of the moments
of the data set, an ordinal and a new hybrid technique have
been presented that extends to the ordinal technique an
ability to differentiate specific distributed features in the
data sets. The addition of a prior categorisation step has
also been illustrated.
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Fig. 18 Pattern functions 1 and 2

−60 −50 −40 −30 −20 −10 0 10
0

2

4

6

8

10

12

14

16

level, dB

oc
cu

rr
en

ce

Fig. 19 Histogram of pattern function 1

Table 3: Qualitative comparison of various pattern comparison techniques

Metric Interval Ordinal Single
coefficient

Domain Holistic Robust Sensitivity to
outlying points

Absolute
ref

Cross-correlation yes no yes �1 � k � 1 yes no yes yes

Statistical moments yes no no N/A yes no no yes

Ordinal no yes yes �1 � k � 1 yes very stable no no

Interval-ordinal yes yes yes �1 � k � 1 yes stable no yes

Categorical-interval yes yes yes �1 � k � 1 yes no yes yes

Categorical-ordinal yes yes yes �1 � k � 1 yes very stable no yes
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In the text, the comparison was made between the
histograms, rather than between the respective data sets, by
utilising the ordinal coefficient of correlation. However,
the choice of method for determining the adjacency of the
histograms is arbitrary and any of the comparison
techniques discussed above could be utilised on the
histograms of the data sets as well as on the actual data
sets. Thus, after categorisation it is possible to provide
categorical interval as well as categorical ordinal measures
of correspondence.

All of the conventional and novel comparison techniques
have particular areas of applicability where their specific
characteristics are suited to the abstraction of the large data
sets to distil their important or relevant features so that
these can be quantitatively assessed. However, two of these
techniques deserve a special note. The EMPL has been
found to be particularly useful for graphically illustrating
the differences between two one-dimensional pattern cuts
whilst the ordinal measure of association has been found to
be particularly adept at describing differences between two-
dimensional pattern functions.

In principle, the hybrid ordinal-interval technique should
offer significant advantages over the ordinal technique.
However, at this time, it is not sufficiently mature for
general purpose, unguarded use.

The research reported in this paper into antenna pattern
measurement is ongoing and its extension to comparisons
based on treating the data categorically in terms that are not
interval value based is underway. However, it is clear that
the new and novel antenna measurement techniques being
pioneered at present offer an assessment challenge if
the large volumes of data these techniques generate are
to be quantitatively, effectively and concisely analysed and
summarised.
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9 Appendix: Examples of the ordinal measure
process

Example 1: Partial positive correlation: Consider
the two data sets I1 and I2 where,

I1 ¼ ½10; 20; 30; 40; 60; 50�
and

I2 ¼ ½10; 20; 30; 40; 50; 60�
Let the rank of I1 and I2 be p1 and p2 respectively. Clearly

p1 ¼ ½1; 2; 3; 4; 6; 5�
and

p2 ¼ ½1; 2; 3; 4; 5; 6�

Now, s is a composition permutation. To find the first
element of s, search through the elements of p1 to find the
element containing the value 1 and make a note of its index.
We use the value of the element of p2 with the index
corresponding to the index of the element already found in
p1 as the value of the first element of s. This is then repeated
for each element in s. So consider finding the first element
of s, here, the first element in p1 is equal to 1. So take the
first element in p2 and place it in the first element of s. Now
consider trying to find the 5th element of s for example. So,
here the 6th element of p1 is equal to 5. Now the 6th
element of p2 contains the value 6 thus the 5th element of s
contains the value 6.

Repeating this procedure for each of the elements of s in
turn yields:

s ¼ ½1; 2; 3; 4; 6; 5�
di

m is a distance vector where the value of the ith element of
di

m depends upon the sum of a function that counts the
number of out-of-order elements. This function contains
the number of concurrent out-of-order elements, i.e. if one
element is out-of-order the function takes the value 1, if two
elements are next to one another and out-of-order the
function takes the value 2 etc. Thus, as s contains only one
out-of-order element then

di
m ¼ ½0; 0; 0; 0; 1; 0�

Since the maximum value of di
m is 1 then the coefficient of

correlation is

KðI1; I2Þ ¼ 1� 2� 1

6=2
¼ 1

3

Several more examples are presented below with just the
results shown.

Example 2: Perfect negative correlation: Let,
p1 ¼ ½6; 5; 4; 3; 2; 1� and p2 ¼ ½1; 2; 3; 4; 5; 6�. Then

s ¼ ½6; 5; 4; 3; 2; 1�
Hence

di
m ¼ ½1; 2; 3; 2; 1; 0�

Thus

KðI1; I2Þ ¼ 1� 2� 3

6=2
¼ �1

Example 3: Partial negative correlation: Let,
p1 ¼ ½1; 2; 6; 5; 4; 3� and p2 ¼ ½1; 2; 3; 4; 5; 6�. Then

s ¼ ½1; 2; 6; 5; 4; 3�
Hence

di
m ¼ ½0; 0; 1; 2; 1; 0�

Thus

KðI1; I2Þ ¼ 1� 2� 2

6=2
¼ � 1

3

Example 4: Insensitivity to texture: Let, p1 ¼
½1; 3; 2; 4; 6; 5� and p2 ¼ ½1; 2; 3; 4; 5; 6�. Then

s ¼ ½1; 3; 2; 4; 6; 5�

Hence

di
m ¼ ½0; 1; 0; 0; 1; 0�

Thus

KðI1; I2Þ ¼ 1� 2� 1

6=2
¼ 1

3
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Here we obtain the same coefficient of correlation as we
did for the case when p1 ¼ ½1; 2; 3; 4; 6; 5� and p2 ¼ ½1; 2;
3; 4; 5; 6� although clearly there are more out-of-order
elements, i.e. two, in this case. Such an occurrence is an

example of insensitivity to ‘texture’ within a data set.
Although this is clearly a disadvantage, it is not thought to
be of primary importance when considering antenna
radiation patterns.

550 IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005




