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Abstract—In this paper, we present a method for measuring 

antenna group delay (GD) in a planar near-field range.  The 

technique is based on a set of three antenna pairs, measured 

sequentially, from which the insertion phase of the measurement 

system and the near-field probe can be resolved.  Once these 

parameters are known, insertion phase for the device under test 

(that is to say a Tx or Rx antenna) can be measured and GD 

calculated as the negative frequency derivative of the insertion 

phase with respect to frequency.  An added complexity in the case 

of a near-field measurement is the near-field probe is in close 

proximity to the device under test, does not satisfy the far-field 

condition.  We also show that group delay can be extracted from 

a single near-field measurement point in the antenna’s aperture 

plane, leading to significant test time savings.  Measured results 

are presented and discussed. 

I. INTRODUCTION 

Equivalent Isotropically Radiated Power (EIRP), Saturating 
Flux Density (SFD) and Group Delay (GD) are three system 
level parameters often measured during the characterization of 
spacecraft systems. EIRP is of interest for transmitters, SFD for 
receivers and GD for the entire up/down link. A test 
methodology for EIRP and SFD was first presented in [1] and 
[2] and a detailed procedure presented in [3].  To date GD has 
only been measured under far-field (or simulated far-field) 
conditions.  In [4], a concept for measuring GD in a planar 
near-field (PNF) range was described, however no 
methodology was included and in [5] a three-antenna method is 
discussed, however the treatment is limited to the far-field case.  
In this paper, we develop a three-antenna GD calibration 
procedure that is effective in the near and far-zones and 
examine how it varies with measurement distance. 

II. OVERVIEW OF GROUP DELAY 

For a two-port linear time-invariant (LTI) system GD is 
defined as the negative of the rate of change of transmission 
phase angle with respect to frequency. Ideally, this delay 
should be the same for all frequency components if distortion at 
the output is to be avoided.  When expressed mathematically 
the propagation group delay, defined by the Brillouin equation 
[6], can be stated as follows, 
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Here, 21 is the insertion phase angle expressed in radians 
and is the argument of the forward transmission scattering 

coefficient, S21.  That is to say, the group delay is defined to be 
the negative slope of the phase response of the LTI system 
being considered.  This can be considered to represent the 
delay of the envelope of the modulating signal and serves as a 
transfer function to characterize signal dispersion.  Through an 
exchange of variables, and again assuming that the phase angle 
is expressed in radians, this can be expressed equivalently as, 
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For practical numerical cases, equation (2) can be 
approximated by a sided difference where the frequency step is 
made as small as is practical, 
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Alternatively, and providing the frequency points are 
monotonic and equally spaced, a more accurate numerical 
derivative can be obtained by taking central differencing (with 
sided-differences being taken at the extremities of the data 
arrays), 
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By way of an illustration, Figure 1 contains a plot of the 
calculated group delay of a 0.3 m (12 inch) long section of 
WR90 waveguide as a function of frequency.  Here, it is 
evident that near the waveguide cut-off, the group delay varies 
very rapidly with frequency.  A typical open ended rectangular 
waveguide probe can be expected to behave broadly similarly 
and as such these probes, and any waveguide horns, should be 
used well away from their cut-off frequency. 

Conversely, Figure 2 shows the group delay for a 0.127 m 
(5 inch) section of WR34 rectangular waveguide section across 
a more limited frequency span where the group delay is 
essentially independent of frequency, cf. results presented in 
the following section. 
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Figure 1: Group delay shown as a function of frequency 

for a 0.30 m (12 inch) section of WR90 waveguide. 
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Figure 2: Group delay of 0.127 m (5 inch) section of WR34 

rectangular waveguide. 
 

When attempting to measure the group delay of a given test 
antenna it is crucial that the performance of this antenna be 
isolated from the other parts of the RF subsystem.  These 
constituent parts are illustrated in Figure 3 below.  In general, 
we can consider that the phase is measured between the two 
ports of the vector network analyzer (VNA).  This means that 
in addition to the AUT, the phase change introduced by the 
guided wave path, the probe and the free space between that 
exists between the AUT and the probe, all need to be taken into 
account.  Although the following treatment pertains specifically 
to planar near-field measurements, the method is far more 
general and could be applied to other geometries. 
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Figure 3: RF subsystem in near-field test system showing 

guided wave path, AUT, probe and free space portions 
 

Let us assume that near-field measurements are then taken 
on three antenna combinations 1 & 2, 1 & 3, and 2 & 3.  Here, 
Antenna 1 is taken to be the AUT, Antennas 2 and 3 are 
assumed to be non-identical antennas.  Thus, (assuming that the 
free space phase change has been compensated for within the 
near-field to far-field transform) the measured far-field phase 
can be expressed as, 


2,121   B
 

Here, 1 is the transmission phase through the Tx antenna, 

2 is the transmission phase through the Rx antenna, B is the 
transmission phase through the guided wave portion of the RF 

subsystem and 1,2 is the measured phase through the system.  

Here, we assume that we can measure B by connecting the 
cable to the Tx and Rx antennas together and measuring this 
bypass phase.  As a part of this measurement, we will need to 
calibrate out, or ignore, the insertion phase of any RF adapters 
that are needed to allow the RF cables to be connected together.  
Thus, three relationships for the three measurements can be 
expressed as, 
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When rearranging these three equations the transmission 

phases of the individual antennas can be obtained and 

expressed in terms of the measured parameters similar to what 

is done during the three-antenna gain measurement method 

[7], 
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Thus, the individual phases can be obtained from the three 
separate antenna measurements without a priori knowledge.  
The close proximity between the AUT and the probe means 
that this technique can be susceptible to errors resulting from 
AUT to probe multiple reflections. It is important to note that 



the range of phase angles is limited to modulo  which is half 
the ordinary phase range.  Thus, when evaluating equations 9 - 

11 the resulting phases must be wrapped back into modulo  
phase range.  However, before the group delay can be 
computed the phase needs “unwrapping” by changing absolute 

phase jumps greater than or equal to  to their complimentary 
angle.  Then, the group-delay can be computed using the usual 
formula.  Failure to do this properly results in discontinuities 
being encountered within the resulting calculated group delay. 

In general, in the far-field, the transmission phase is a 
function of the orientation of the respective antennas and the 
position of those antennas when they were tested within the 

range.  However, if we limit ourselves to considering the  =  

= 0 boresight point and we assume that any correction for the 
offset of the AUTs from the origin of the measurement 
coordinate system is implemented during the near-field to far-
field transformation [7], which is usually the case, then then 
equations (9) – (11) remain valid. 

III. THREE-ANTENNA GROUP DELAY MEASUREMENT 

SETUP 

The method presented above was used to compute the 
group delay of three antennas; a center fed parabolic reflector 
antenna with diameter D, a pyramidal horn and an open ended 
rectangular waveguide probe.  The separation, sampling 
density and physical location of the antenna under test did not 
necessarily remain static between the three sets of 
measurements. The near-field amplitude distribution of the 
parabolic reflector is shown in Figure 4. The reflector’s feed 
produces considerable blockage at the center of the circular 
aperture. This is important to note and should be considered 
when computing group delay directly from the near-field phase 
response as signal to noise ratio will be limited in this region.  

Planar near-field measurements were taken for the three 
combinations across the frequency range that spanned 23 to 30 
GHz.  Additionally, a bypass measurement was also made that 
was intended to allow the phase of the guided wave path of the 
RF subsystem to be extracted from the measurements. 
Unfortunately, it was found that this data contained artefacts 
from impedance mismatch induced multiple reflections which 
were undesirable.  As it is possible to transform S-parameter 
data to the time domain from the frequency domain using the 
time-frequency Fourier relationship [7], it was possible to 
suppress these effects.  It is well known that the time-domain 
signal can be obtained from the frequency domain data using 
an inverse Fourier transform using, 
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Figure 4: Near-field amplitude distribution of center fed 

parabolic reflector antenna. 
 

Conversely, the transform from the time-domain to the 
frequency-domain can be expressed as, 

    
 dtetsfS ftj 2
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When the bypass measurement (transmission) S-parameter 
data is transformed to the time domain and the amplitude is 
plotted as a function of time in logarithmic form, we obtain the 
time domain result as shown in Figure 5 below. 
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Figure 5: Time domain plot of S21 showing the time taken 

for the signal to propagate through the RF system. 
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Figure 6: Group delay plotted as a function of frequency of 

bypass measurement. 
 

Figure 5 shows the transmission scattering coefficient 
plotted as a function of time.  Here it is clear that the largest 
signal takes approximately 74 ns to propagate through the 
network.  However, it is also evident that there is a great deal 
of spurious signals that can be seen to take significantly longer 
to propagate through the system.  These can be filtered out with 
the remaining signal being transformed back to the frequency 
domain providing reliable calibration data for the three-antenna 
method.  Clearly, the group delay can be computed directly 
from the unwrapped phase function as described above and is 
shown in Figure 6.  Here, a 41 point “boxcar” average was 
applied to the GD data so as to be able to reveal the underlying 
function.  The GD data was initially computed at 7001 points 
spanning 23 to 30 GHz where the 7001 points corresponded to 
the number of S21 samples that were taken in the finely 
sampled “bypass” measurement.  This was compared to the 
equivalent result as obtained by applying a band-pass filter to 
the time-domain data, which is shown as the blue trace. 

IV. PRELIMINARY RESULTS 

Figure 7 below presents the group delay as calculated using 
the three-antenna method with the phase values being taken 

from the  =  = 0 far-field peaks of the three combination 
measurements using the technique described in Section II.  
Note that negative group delay is not implying superluminal 
behavior. If one considers wave propagation over a physical 
distance R, this translates to a phase change of –k0R, where k0 is 
the free-space wavenumber. Assuming that the medium is non-
dispersive, this implies a linearly decreasing phase change as a 
function of increasing frequency. Taking the negative 
derivative of this linear function, leads to a constant positive 
group delay. This observation leads one to conclude that a 
negative GD corresponds to a positively sloped phase function 
versus an increase in frequency, which implies slower wave 
propagation velocities at higher frequencies – the opposite of 
what one would observe in rectangular waveguide, for 
instance. Nevertheless, this is a characteristic that could be 
observed when dealing with complex radiating structures. 
Here, the pyramidal horn and open ended waveguide probe 

both behave like waveguide above cutoff, as one would expect 
and align with the result shown above in Figure 2. 

By way of a comparison, this calculation was repeated only 
here the phases were extracted from a single point within the 
parabolic reflector’s aperture plane, z = 0.  Here, the x = 0, y = 
0.25D, z = 0 point was used and can be found presented in 
Figure 8. The particular (x,y) point was selected as it sits 
outside of the near-field blockage region shown in Figure 4 
above. Here, D refers to the diameter of the circular reflector 
antenna. The phase response at the aperture plane is extracted 
using the standard plane-to-plane transform technique [7], 
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Thus, the field over one plane in space can be used to 
calculate the equivalently polarized field over the surface of 
another, parallel plane displaced by a distance z in the z-axis.  
As only the propagating near-field is sampled the limits of 
integration in (15) can be collapsed to, 

 2

0

22 kkk yx   

Please note that the purpose of using the plane-to-plane 
transform was to allow the GD calculation to be examined at a 
variety of different points in space as opposed to being a 
fundamental part of the GD calculation. 
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Figure 7: Group delay of 

AUT, SGH & probe 

calculated in the far-field. 

Figure 8: Group delay of 

AUT, SGH & probe 

calculated in aperture plane 

at x = 0, y = 025D, z = 0. 
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Figure 9: Group delay of 

AUT, SGH & probe 

calculated at x = 0, y = 

0.25D, z = D. 

Figure 10: Group delay of 

AUT, SGH & probe 

calculated at z = 4D. 



The group delay was calculated again at z = D and z = 4D 
and is plotted in Figure 9 and Figure 10, respectively. The 
results derived from the near-field phase show encouraging 
similarities to the result derived from the far-field. The plane-
to-plane transform was used as it provides the most reliable 
near-field data.  However, it should be noted that one can also 
use the phase from the near-field measurement plane to 
eliminate the extra step of the plane-to-plane transform. 

These calculations can be repeated using other x, y 
positions in the near-field with very similar results being 
obtained providing the signal to noise ratio is good.  It is 
possible to improve the results by averaging across a number of 
different near-field points and examples of this can be found in 
Figures 11 and 12 below. Here, for example, 101 data points in 
the near-field region were averaged with care taken to ensure 
points in the blockage region were excluded. These results 
show encouraging agreement with the far-field result presented 
in Figure 7 above. 
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Figure 11: Group delay of 

AUT, SGH & probe 

calculated in the aperture 

plane, z = 0. 

Figure 12: Group delay of 

AUT, SGH & probe 

calculated at z = D. 

The averaging that is obtained by combining results from a 
number of points selected at random across the measurement 
plane is evident. These results provide very good agreement 
with the result obtained from examining the far-field boresight 
phase, cf. Figure 7 above.  This is expected as, for the planar 

case, the near-field to far-field transform for the  =  = 0 
point equates to a vector sum although this would not be true 
for other far-field directions. 

V. SIMPLIFIED GROUP DELAY MEASUREMENT 

The treatment presented above allows one to determine the 
group delay of an antenna in a very general manner.  Although 
the results of the previous section demonstrate that it is possible 
to determine antenna GD from measurements made in the near-
field without the requirement for taking complex two-
dimensional near-field scans, it does still necessitate the 
measurement of three pairs of antennas, which is time 
consuming and therefore ultimately undesirable.  However, for 
the case presented above, it is evident that providing the GD is 
computed at frequencies that are not too close to the waveguide 
band crossings, that is to say well away from the cut-off of the 
fundamental TE10 mode, then the GD is comparatively 
insensitive to frequency.  Furthermore, it may also be possible 
to select probes that further minimize the amount of GD, e.g. 
by reducing the length of the open ended rectangular 
waveguide (OEWG) probe or alternatively, by selecting an 
alternative GD optimized probe. 

To illustrate this further, Figure 13 below presents a 
comparison of measured near-field phase and calculated far-
field phase.  Here, the similarity between the two traces is 
evident which suggests that the GD that is calculated from this 
phase function will be in similarly encouraging agreement.  
Please be aware that as GD is obtained from the slope of the 
phase function the constant offset between the traces is 
unimportant.  This is an important result as, in contract to those 
results presented in the previous section; the three-antenna 
measurement method was not used. 

 

Figure 13: Comparison of measured near-field phase 
and calculated far-field phase. 

The group delay measurement technique presented above 
using the three-antenna technique and the bypass measurement 
illustrates that we can account for all the details in the 
measurement if necessary.  However, a user will not 
necessarily want to invest the time and resources necessary to 
perform the full three-antenna measurement every time they 
measure GD with the result shown in Figure 13 suggesting that 
the GD of the transmission line and the probe are potentially 
small enough that in a practical measurement they may be 
neglected. 

 

Figure 14: Comparison of GD delay of AUT and SGH 
calculated using different approaches. 

So that this possibility could be further explored, the GD 
was computed using the three-antenna method and using only 



the AUT-to-probe near-field data.  Figure 14 above shows a 
comparison of the GD as calculated using the three-antenna 
method and the transmission phase as obtained from a 
conventional measurement between AUT and probe.  It is clear 
that the results are in good agreement, noise aside, for both the 
complex reflector antenna and the comparatively simple 
pyramidal horn suggesting that the GD of the probe is small, cf. 
Figure 2 above, and may be ignored in many circumstances.  
During the preparation of this result, in order to simplify the 
processing, a linear phase term was removed from the 
measured phase and explains the difference in the 
normalization of the absolute GD value when compared to the 
result shown above in Section IV.  Removal of linear term is 
not required for group delay calculations.  The liner term is 
removed to examine the phase versus frequency graphically to 
examine the detail within the data.  Removing linear term 
illustrates presence of high frequency variations that produce 
“noise” in group delay results which can be mitigated through 
time-gating or with the use of a boxcar average, as illustrated 
above in section III, cf. Figure 6. 

By way of a further verification, an additional GD 
measurement was made at X-band.  As with the Ka-band test 
discussed above, the GD was computed at different positions in 
the near-field.  These GD results were compared with the GD 
result that was obtained from using the far-field boresight point 
and the difference can be seen plotted below in Figure 15.  
Here, it is clear that the difference is very small and is 
independent of frequency. 

 

Figure 15: Plot showing difference between GD 
calculated in the far-field and GD calculated at different 
positions in the near-field. 

VI. SUMMARY AND CONCLUSIONS 

This paper has presented the development and preliminary 
validation of a three-antenna measurement technique for 
determining the group delay of a given antenna.  This paper 

then shows that this method can be used in the near-field 
providing the point chosen has good signal to noise ratio.  It is 
also used to confirm that it is possible, in certain cases, to use a 
simpler method involving just the AUT and a near-field probe.  
Thus, this paper has shown that it is very likely that the group 
delay measurements can be made between the probe and the 
AUT at the same z distance that was used for the conventional 
planar near-field measurements using the near-field phase that 
was obtained during the regular antenna pattern measurement.  
Furthermore, the comparisons shown above, and others not 
shows due to practical limitations of space, confirm that there 
is very little difference between group delay calculated using 
just the derivative of the measured near-field phase at any high 
amplitude point within the near-field data set and the group 
delay derived from calculating the derivative of the boresight 
far-field phase as obtained from using all the near-field data.  
Although this is perhaps an initially surprising result, it is 
worth keeping in mind that GD is neither a near-field nor a far-
field property.  Like frequency bandwidth, it is a property of 
the antenna that is in principal independent of the location of 
the reference point.  Thus, providing the slope of the measured 
transmission phase is recovered and treated correctly, the 
ensuing GD should be reliable.  Hence, it may also be possible 
to measure group delay by placing a suitable probe at a single 
point in the near-field and observing the distortion of the pulse 
transmitted from the probe.  Consequently, the planned future 
work is to include obtaining experimental verification of this 
approach.  Although these conclusions are preliminary, they are 
based on the measurement and analysis of two different 
antennas operating at different frequencies, these conclusions 
align with the findings reported by other workers and will be 
followed up with further verified with additional measurement 
and analysis. 
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