

ANTENNA NEAR-FIELD RANGE ASSESMENT

OVERVIEW

We provide range assessments for near-field measurement facilities.

EVALUATION OF

Antenna gain, side lobe level, cross-polarization, and/or beampointing accuracy.

OPTIONAL

In some circumstances, we can offer a lower cost option by providing a mini assessment based on a limited number of error terms. Please contact us to discuss your specific requirements.

> 11521 Monarch Street Garden Grove, CA 92841 Phone 714.463.6310 Fax 555.543.5433

Near-field Range Evaluation Using NIST 18-Term Error Model

Any antenna range, be it near-field or far-field, is subject to error sources which should be carefully analyzed and evaluated to not only determine the expected measurement accuracy, but to identify ways of improving accuracy. The near-field industry has adopted an evaluation technique based on a set of error terms first proposed by NIST ("Error Analysis Techniques for Planar Near-field Measurements", IEEE Trans. Antenna and Prop. Vol.36, no.6, June 1988, by Allen Newell).

The NIST 18-Term Error Analysis uses a combination of mathematical analysis, computer simulation and near-field measurements to estimate the antenna measurement uncertainty for a given frequency, antenna, and facility. NPM has extensive experience in performing complete range evaluations for antenna gain, side lobe levels, cross-pol levels, and beam pointing errors. During system installation and training, we typically include a brief overview of the range evaluation process. Upon request, we can provide a quotation for a complete range accuracy evaluation of your facility. Range assessment includes on-site testing, analysis, report, and recommendations for improving measurement accuracy.

No.	Item	Uncertainty (dB)	S/E Level (dB)	Source
1	Probe relative pattern	0.10	-39	OEWG model
2	Probe polarization ratio			N/A
3	Probe gain measurement			N/A
4	Probe alignment error	0.2	-33	Error calc at 60 deg
5	Normalization constant			N/A
6	Impedance mismatch error			N/A
7	AUT alignment error			N/A
8	Data point spacing (aliasing)	0.15	-35	Aliasing test
9	Measurement area truncation	0.04	-45	Truncation test
10	Probe XY position errors	0.01	-58	X error map
11	Probe Z position error	0.14	-36	Z error map
12	Mutual coupling (Probe/AUT)	0.27	-30	1/4 wave test
13	Receiver amplitude linearity	0.15	-35	Attenuator test
14	System phase error	0.15	-35	System phase test
15	Receiver dynamic range	0.48	-25	S/N and calc
16	Room scattering	0.27	-30	1/4 wave test
17	Leakage and crosstalk	0.03	-50	Loaded port test
18	Random amplitude/phase errors	0.15	-35	Repeatability
	RSS Total =	0.75	21	

Example of -30dB Sidelobe Uncertainty Budget Using NIST 18-Term Error Model

