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Abstract—Compressive Sensing (CS) has been deployed in a 

variety of fields including wideband spectrum sensing, active user 

detection and antenna arrays. In massive MIMO arrays, CS has 

been applied to reduce the number of measurements required to 

verify the arrays excitation in a production environment. All 

follow the general approach of creating the sparsity needed for 

CS by subtracting the measured far-field or near-field of the test 

array from that of a 'gold standard' array measured under 

identical conditions. In a previous paper [1] the authors have 

shown that using a Far-Field Multi-Probe Anechoic Chamber 

(FF-MPAC) and an optimal sampling strategy CS can offer 

accurate reconstruction of array excitation with a mean square 

error (MSE) approaching -40dB using a sampling strategy of just 

1.4% of the Nyquist rate. The approach assumed production 

standard arrays with failure rates up to around 2%. In this paper 

we extend the concept to using a planar near-field (NF) 

measurement offering a much more compact test facility that is 

more suited to the production environment for these antennas. In 

our initial work the reconstruction of array excitation with a 

mean square error (MSE) of -30dB was achieved for a 20 x 28 

element array antenna at half wavelength spacing using just 

1.5% (177 samples) of the samples needed for a conventional NF 

measurement (12,100 samples) employing back projection to the 

aperture. Critical to the performance is the realization that the 

CS samples need to be confined to the central region of the NF 

measurement plane which for a conventional NF to FF planar 

antenna pattern measurement would offer a massive truncation 

error. This paper addresses the optimal sampling strategy needed 

for this NF approach and presents a statistical performance 

analysis of the reconstruction accuracy. 

I. INTRODUCTION 

The 5th generation new radio (5GNR) promises many new 

possibilities, however, perhaps the circa ten-to-twenty-fold 

increase in data rate is the most significant to the antennas and 

propagation community as this has necessitated the adoption 

of several important new technologies. Chief amongst these is 

the move to higher frequency bands, and the adoption of far 

more complex Massive MIMO (Multiple Input Multiple 

Output) array antenna architectures and electronic beam 

scanning, which are needed to handle the associated increase 

in free-space RF path-loss. Although the frequency band 

below 6 GHz may be used during the initial rollout, 5G 

technologies will mainly occupy the 28 GHz, RF2, frequency 

band, or possibly higher, necessitating the widespread use of 

more complex, electrically larger, massive MIMO antennas [2, 

3]. With the adoption of these more complex phased array 

antennas (typically comprising many thousands of elements), 

comes the need to test and calibrate them as part of the 

production process. Generally, techniques developed for high 

value, low volume production, arrays used in space and 

aerospace applications are time consuming and inappropriate 

for mass manufacture. Such techniques include using a single 

low Radar Cross Section (RCS) probe to measure the field 

close to each array aperture, or the use of Near-Field/Far-Field 

(NF/FF) measurements to verify the FF beam or back project 

into the aperture to verify element excitations [4]. For volume 

production of massive MIMO arrays such studies need to be 

undertaken at the development stage leading to the creation of 

a reference or ‘gold’ standard antenna which then needs to be 

replicated in volume. Thus, we need to consider alternative 

methods to drastically reduce the number of measurements 

and the time needed to determine an arrays excitation by 

making use of the known excitations of the ‘gold’ antenna. 

Compressive Sensing (CS) has been deployed in a range of 

disciplines and works on the principle that we can reconstruct 

a big space (P), from just a few samples (S) providing we can 

find an appropriate transform that enables the big space to be 

defined by only a few variables within this sparse domain. For 

the case of antennas, an array of sources can be used to define 

the whole of the far-field radiation pattern in the forward half-

space using the plane wave spectrum or the equivalent sources 

method. When using the equivalent sources method, the 

inverse transform from the NF to aperture is the ‘compressed 

sensing’ protocol with the key to compressive sensing being 

recovering the full measurement from the compressed ones by 

utilizing the sparsity property [5] from a few scattered 

measurements. 

CS was first applied to the spherical near-field (SNF) case 

to reduce the number of NF measurements needed by 

exploiting the inherent sparsity property of spherical mode 

coefficients (SMCs) [6, 7] and hence shorten the acquisition 

time with a smaller number of NF measurements and so 

increasing measurement speed. The developed sampling 

schemes have also been applied to non-spherical geometries, 



with CS being successfully utilized to reduce the truncation 

error in cylindrical NF measurements [8]. 

Alternatively, [9-11] presented the idea of applying CS to 

array diagnosis from either NF or FF measurements.  Here, 

instead of attempting to reduce the number of measurement 

points required for NF to FF transformation, they assume that 

the number of failed elements was much smaller than the total 

number of elements within the array and this was a critical 

step to providing the requisite sparsity property. This 

technique requires the availability of a ‘gold’ antenna and 

imposes upper bound limits on the amount of measurement 

noise permissible if the reconstruction of a given number of 

faults is to be successfully determined. 

In this paper, we exploit the fact that the ‘gold’ reference 
antenna exists, and explore the use of CS to undertake a back 
transform to the array aperture from the PNF measurement of 
the difference between the NF pattern of the AUT, and the 
‘gold’ antenna using minimal, randomly located, radiated NF 
samples. Here, the aim is to minimise the number of 
measurement points required to reliably and accurately 
measure the antenna in the NF, whilst accurately reconstructing 
the array element excitations. The approach used in this paper 
is summarized in Fig. 1, where the back projected aperture field 
indicates just the difference between the aperture field of the 
“defective” production antenna, and the ‘gold’ reference 
antenna. 
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Figure 1.  Top: Flow diagram of defective element 

detection using compressive sensing. Bottom: the 

‘sparse’ difference antenna concept. 

II. EQUIVALENT CURRENTS METHOD 

The equivalent magnetic current approach we use here 

utilises conventional planar near-field data to obtain an 

equivalent magnetic current sheet over a convenient surface 

that encloses the AUT which can then be used to obtain the 

desired electric fields elsewhere in space including the far-

field [12]. In this procedure, an electric field integral equation 

is derived which relates the measured near-field to the 

equivalent magnetic currents which is solved using an 

efficient, all be it resource intensive, moment method 

procedure [12], with point matching which converts the 

integral equation into an equivalent matrix-equation which can 

be solved in one of a number of ways, e.g. by using the least 

squares conjugate gradient (LSQR) method [13]. 

Let us assume that the antenna is placed in one half-space, 

and is radiating into the other, forward half-space, with an 

infinite xy-plane dividing the two regions. If an infinite electric 

conducting sheet is postulated on one side of the surface, then 

in this case only the tangential components of the electric 

fields need be specified on the surface. The magnetic current 

is then provided by [12], 

 ( )
( )( )ˆ2   over the aperture

0                      elsewhere

a

m

E r n
J r

 ′ ×
′ = 



 (1) 

The radiated fields must be determined in the presence of 

the conducting sheet which results in the solutions only being 

available for the forward half-space. The electric vector 

potential F may be defined as [12], 
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Here, the free-space propagation constant is denoted by k0, 

primed variables are associated with the source point, and un-

primed variables are associated with the field point where the 

distance R can be expressed as, 

 ( ) ( ) ( )
2 2 2

R r r x x y y z z′ ′ ′ ′= − = − + − + −  (3) 

We may obtain the electric fields from the electric vector 

potential F as [12], 
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Here E(r) is the field that is measured over the planar 

acquisition surface S located at a distance of a few 

wavelengths from the AUT, Jm denotes the surface magnetic 

current sheet that we seek. Assuming a Cartesian coordinate 

system and polarization basis we may write this in a more 

convenient form [12], 
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This can be solved using a method of moments approach 

[12]. We may now use the sampling theorem to replace the 

continuous electric fields with a set of discrete samples, and 

the current sheet with an array of fictitious magnetic dipoles. 

This latter assumption is equivalent to using a delta function as 

the expansion function for the current source within the 

integrand, and enables us to replace the integration with a 

summation which allows us to express this in an equivalent 

matrix form yielding, 
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The elements in the matrix [G] can be obtained by 

evaluating, 
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If the reconstructed currents are more than a wavelength 

away from the measurement surface, then the area of 

integration may be collapsed to that of an infinitesimal current 

element. Thus, the excitation coefficients for the fictitious 

magnetic dipole array can be obtained by solving the system 

of equations [12], 
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If the number of measured near-field points equals the 

number of fictitious magnetic dipoles, then this system of 

equations may be solved uniquely. If the number of measured 

points is greater than the number of dipoles, i.e. current 

elements, then this may be solved in a least squares sense. 

Crucially, this system of equations is in a form that the CS 

method can be employed, with this being described in the next 

section. 

III. DEFECTIVE ELEMENT DETECTION USING COMPRESSIVE 

SENSING 

In this CS system, we assume the availability of the failure-

free ‘gold’ antenna array, whose N radiating elements’ 

excitation coefficients are defined as { }1, , ,
T

r n N
X x x x= K K

, 

where xn is the excitation coefficients of the nth radiating 

element. The corresponding NF pattern vector is denoted as 

{ }1, , , ,
T

r m M
P p p p= K K

, where pm is the probe voltage 

measured at the mth NF sampling point of a total of M sample 

points. Correspondingly, we denote Xd as the excitations of the 

(defective) AUT collected at sub-Nyquist sampling rate and Pd 

as the probe measured NF pattern collected from the AUT. 

Then we consider the following system: 

 P AX N= +  (13) 

where P = Pr – Pd, X = Xr – Xd, N(0, σ2) is additive white 

Gaussian noise (AWGN) with zero mean and variance σ2 and 

is set by specifying a given signal-to-noise ratio for the 

measurement environment. Let A = ψU with the binary 

sampling matrix ψ ∈ CM×K selects M rows randomly from the 

discrete Fourier matrix U ∈ CK×N. Note that the choice 

influences the recovery performance significantly, which will 

be discussed in the next section. The element (k, n) of the 

matrix U is defined as: 
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where k is the number of Nyquist sample points. The task of 

array diagnosis is to detect the faulty elements. We denote the 

number of faulty elements as F, which is much smaller than 

the number of radiating elements N. Therefore, X is an F-

sparse vector, in which only the faulty elements of the original 

array contribute to the sparse support. By doing so, we convert 

the problem into a sparse one. Compressive sensing can be 

applied to recover Xd with the knowledge of the excitation 

coefficients of the ‘gold’ antenna, Xr, by solving the following 

problem: 
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where σ2 is determined by the noise level affecting the 

measured samples Pd and Pr. It is noted that the above l0 

problem is non-convex and difficult to solve. In compressive 

sensing, it has been relaxed to an l1 problem with guarantee on 

exact recovery when the restricted isometry property is 

satisfied. Therefore, the optimization problem becomes, 
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Note that the above l1 problem is convex, which could be 

solved by standard convex optimization tools. In this paper, 

we utilise the CVX toolbox [14] to solve (16). The whole 

procedure of compressive sensing based defective array 

detection can be seen summarized in Fig. 1. 

It is noted the reweighted l1 norm has been proposed in [15] 

to provide less penalty on the non-zero element in X. By 

introducing the weight to (16), the convex problem is solved 

in an iterative way. In the lth iteration, the convex problem is 

solved as, 
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where ( )11l l

n nw x η−= +  defines the weight for xn
l, and η is a 

small positive constant to ensure the numerical stability of the 

algorithm. In general, the solution is robust to the choice of η. 

We note that wn
0 = 1 is taken as the initial value, which makes 

the reweighted l1 problem the same as the typical l1 problem. 

The above CS process can be directly applied to a one-

dimensional linear array, where Xd is the recovered 

excitations. For the case of a two-dimensional array we simply 

wrap this two-dimensional array of excitations into a one-

dimensional vector whilst managing the correct phase 

relationship between two-dimensional elements and NF 

radiation. Thus, for a 20 x 28 element array Xd has dimension 

560, and in the following sections, we will show the 

application of CS to two-dimensional array diagnosis. 

IV. MEASUREMENT SIMULATIONS 

We first consider a conventional PNF scan of a 20 x 28 

element dipole array with half wavelength spacing and 

operating at 8.2GHz. The scan plane is 2m by 2m with the NF 

probe distance of 3λ from the aperture and a measurement 

noise level set at -60dB from the peak signal level, with NF 



measurement points separated by half wavelengths (λ/2) in x 

and y which results in 12,100 sample points. We now add four 

randomly located faults to this array of the form -6dB and 45°; 

-10dB and -75°; -30dB and 135°; -3dB and 110° and simulate 

the defective NF.  We can then compute a conventional vector 

Huygens’ back transform to the array aperture and obtain the 

amplitude and phase excitation of the defective array as shown 

in Figure 2. 

 

 
Figure 2.  Back transformed array excitations for defective 

array. Defective elements indicated by white diamond. 

Top: amplitude, bottom: phase. 

Considering the element excitation as a complex number 

the RMS element excitation error over the whole array was -

15.5 dB with maximum error of -8.4 dB, this taking account of 

both amplitude and phase errors as a single performance 

parameter. The false alarm level (RMS error amplitude 

calculated over the elements that were not faulty) was -25.7 dB 

with a maximum of -11.9 dB. From these results we see that 

the phase errors are quite well defined, but the amplitude errors 

are less so, all with a considerable ‘background noise’ to the 

excitations. 

We now turn our attention to using the CS diagnostic 

process described above which in this case takes the difference 

between the near-fields of the reference and defective antennas.  

The resulting reconstructed excitations of the defective array 

are shown in Figure 3. In this case the RMS element complex 

excitation error over the whole array was -31.7 dB with 

maximum error of -9.4 dB and the false alarm level was -39.9 

dB with a maximum of  -19.2 dB. These results are 

considerable better than the conventional back projection 

results with clearly much lower background noise (low false 

alarm level). Crucially this was achieved with just 177 NF 

samples, which is just 1.5% of the conventional back projection 

case of 12,100 λ/2 spaced samples. 

Critical to achieving this result is the realization that the CS 

samples need to be confined to the central high intensity field 

region of the NF measurement plane, which is effectively the 

projection of the array aperture, as shown by the white 

rectangle in the NF phase plot of Figure 4. For a conventional 

NF back projection process such a data truncation would offer 

massive reconstruction error. In both cases, these measurement 

simulations were taken with each NF point being subject to -

60dB of background noise. 

 

 
Figure 3.  CS based reconstruction of array amplitude 

excitations for defective array. Defective elements 

indicated by white diamond.  

Top: amplitude, bottom: phase. 

This result is just a snapshot, and we need to take a far 

broader statistical view by running a random selection of fault 

locations many times, and plotting the cumulative distribution 

function (CDF) [1] of the mean square error (MSE). 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [m]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
 [

m
]

Reconstructed Near-Field Ex Defective

-150

-100

-50

0

50

100

150

P
h
as

e 
[d

eg
]

 
Figure 4.  NF phase of defective array showing sample 

space as white rectangle 

Figure 5 shows the CDF MSE over 50 runs in the presence 

of -60 dB noise. If we take the 80% CDF MSE level as a useful 

reference point to compare results (i.e. 80% of the runs will be 

better than or equal to this MSE value), then this result shows a 

MSE of -33.1 dB. We have taken the 80% CDF point rather 

than the one-sigma (68%) point, or the two-sigma (95%) as 

arguably it provides a fairer representation of system 

performance. Also shown on this figure is the CDF MSE of 



just the faulty elements, which for this case is -12.8 dB at the 

80% point. The CDF of the maximum value of the excitation 

error for each run is also shown in Figure 5 and at the 80% 

CDF point is -10 dB. 
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Figure 5.  CDF of amplitude excitation error with statistics 

taken over 50 random sets of 4 fault locations. Faults 

fixed as shown in the inset table. 

To achieve these results for a given set of 4 faults we take 

36 random samples within the NF sample rectangle (shown in 

Figure 6) and use CVX [16] to solve equation (16). We then 

repeat this ‘measurement’ process six times with different sets 

of 36 sample points, applying random noise to each of the sets 

to simulate a true noisy measurement. The resulting six sets of 

reconstructed array excitations are then averaged to achieve 

the overall result reconstruction shown in Figure 3. 

Since each set of 36 samples is pseudo-randomly selected 

within the sample space, and this is achived by dividing the 

sample space into 36 equal size rectangles and then randomly 

selecting on sample point within each rectangle. This process 

means that some samples points are used more than once (see 

Figure 6) and this results in the total number of unique 

samples being taken as 177 in the case of Figure 3.  

 

 

Figure 6.  CS NF samples taken in optimal central NF 

region only, 36 random points repeated six times. 

 

In a real-life measurement, these six sets of 36 samples can 

be determined a priori and so the desired unique measurement 

points can then be measured using a robotic arm mounted NF 

probe. For the case of Figure 5, where this whole process is 

repeated 50 times with different fault locations the average 

number of samples needed per reconstruction was 182. 

 

We have rerun the results of Figure 5 with different number 

of the 36 sample sets, and the results are presented in Table I. 

TABLE I.  RECONSTRUCTION PERFORMANCE WHEN AVERAGING 

OVER DIFFERENT NUMBERS OF 36 SAMPLE SET RUNS. ARRAY 

HAS  FAULTY ELEMENTS 

number 

of runs 

excitation 

error at 

80% CDF 

MSE (dB) 

faulty 

element error 

at 80% CDF 

MSE (dB) 

average 

number 

of 

samples 

1 -29.9 -11.4 36 

2 -31.7 -13.3 70 

4 -33.1 -13.8 131 

6 -33.1 -12.8 183 

61 -34.9 -14.9 184 

10 -34.3 -14.3 268 
1 array is beam scanned to 20° in azimuth and 10° in elevation. 

For this case of 36 samples per run, averaging over 4 or 6 

runs gives a good balance of performance with 4 faults. If we 

average over 6 runs and then look at the performance for 

different numbers of faulty elements, we get the results shown 

in Table II. 

TABLE II.  RECONSTRUCTION PERFORMANCE FOR DIFFERENT 

NUMBER OF FAULTY ELEMENTS WHEN AVERAGING OVER SIX 

SETS OF 36 SAMPLE RUNS 

number 

of faulty 

elements 

excitation 

error at 

80% CDF 

MSE (dB) 

faulty 

element error 

at 80% CDF 

MSE (dB) 

average 

number 

of 

samples 

2 -39.2 -17.4 184 

4 -33.1 -12.8 183 

6 -33.6 -16.9 183 

8 -28.7 -12.1 183 

81 -30.2 -13.6 287 

161 -26.2 -13.2 288 

162 -25.2 -12 382 
1 64 samples per run; 2 100 samples per run 

Clearly, reconstruction performance deteriorates as the 

number of faults increases. For 8 faults the reconstructed array 

excitation error is less than -30dB, but this can be improved by 

increasing the number of samples per run from 36 to 64 and 

this is shown in Table II. This of course means that more NF 

samples need to be taken, 287 instead of 183 in this case. The 

last line of Table II shows the case for 16 faulty elements 

(2.9% array element failure rate). At 16 failed elements, the 

upper limit of sparsity is being approached and adding more 

samples does not improve performance as shown in the last 

row of Table II where 100 samples per run are used and the 

overall performances measures are marginally worse. The 

performance metrics described above have concentrated on the 

recovered amplitude of the reconstructed array excitation, 

however, and as can be seen from Figure 3 the phase is also 



well recovered with an RMS phase error over the whole array 

of 2.6° with a maximum error of 51°. The high maximum is a 

function of the fact that one of the set element amplitude 

errors is -30 dB and so reconstruction the phase from such a 

small signal is always problematic. The ability to reconstruct 

the phase is exemplified by reconstructing an array that has a 

beam scan of 20° in azimuth and 10° in elevation applied to it, 

where the performance in amplitude is shown in Table I and 

the reconstructed phase is shown in Figure 7. The performance 

difference between scanned and not scanned case is small, 

with the scanned case being slightly better (recovered rms 

phase error over the whole array of 2.3° with a maximum error 

of 40.8°). 
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Figure 7.  Reconstructed phase for case of 20° azimuth and 

10° elevation beam scanned array with all other 

parameters as in Figure 3. 

V. CONCLUSIONS 

This early-stage investigation of array diagnostics using NF 

CS has provided a strong indication of the levels of 

performance that can be achieved using conventional convex 

optimisation-based CS are similar to those achieved for the FF 

sampled case [1]. So -30dB MSE measurement to element ratio 

(M/N) of <0.33. There is a clear limit to the array element 

failure rate (about 2%) before this approach begins to produce 

poor reconstruction performance. In [17] the Bayesian 

Compressive Sensing (BCS) framework was applied to this 

‘gold’ array comparison approach, the work demonstrated that 

diagnostic errors of order -30dB (are achievable with FF 

measurement to element ratio (M/N) of >0.6. BCS is also more 

complicated to use, requiring several control parameters to 

choose before use. However, [16] demonstrates that a much 

higher failure rates (up to 32%) can be achieved with MSE 

better than -20dB, but at the expense of much higher sampling 

rate. In our future work we will be comparing and contrasting 

these two methods for production testing and examining the 

circumstances when failure rates will be acceptably small. 
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