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Abstract—The success and efficiency of many classical iterative 

plane-to-plane based phase retrieval algorithms is to a large 

extent dependent upon the fidelity of the initializing, i.e. guiding, 

phase estimation [1], [2]. This is especially so when using these 

techniques to recover the phase of active electronically scanned 

array antennas such as those employed within beam-steering 

mm-wave Massive MIMO antenna systems intended for 5G New 

Radio applications where the performance of the algorithm, and 

its ability to not become trapped within one of the (possibly 

many) local minima, is particularly dependent upon the quality 

of the initializing guess where access to a phase reference is not 

always convenient, or even possible. Many traditional phase 

recovery iterative Fourier methods employ simulation or passive 

measurement supported phase initialization [1], however this 

information is not always readily available, or in the 

measurement may require a destructive, invasive, examination of 

the device under test (DUT). In this work we address this issue by 

presenting a proof of concept which employs a machine learning 

based neural network [3] to estimate the initializing phase 

function based on the assessment of the measured amplitude only 

near-field pattern. Here, we show that there is sufficient 

information contained within the difference between the two 

near-field amplitude only scans to be able to determine the 

antenna beam steering characteristics. A simplified beam 

steering case with electronic scanning in one, or more, scanning 

axes is demonstrated and verifies the power of the novel method, 

as well as illustrating its inherent resilience to noise within the 

amplitude only measurements, and verification of the robustness 

of the approach thereby extending the range of measurement 

applications for which this class of iterative Fourier algorithms 

may be successfully deployed [4]. 

Index Terms—Phase-less, Phase Retrieval, Near-Field, 

Machine Learning, Artificial Intelligence, Neural Network. 

I. INTRODUCTION 

The phase-retrieval problem arises in many applications of 
electromagnetics in which the wave phase is apparently lost, or 
is impractical to measure, with only intensity data available.  
Near-field to far-field transforms require phase information to 
be able to accurately predict the equivalent far-field pattern 
from data acquired in the near vicinity of the radiator.  The 
motivation for adopting amplitude only, i.e. phase-less, 
measurements has typically been predicated upon the difficulty 
of accurately acquiring phase information at high frequencies, 
either through a lack of a phase reference or through an 
inability to measure the phase with the requisite accuracy. This 
awkward situation has been further compounded by the 

increasing need to acquire measurements of integrated antenna 
systems intended for communication system applications 
where the ever closer integration of active electronics and 
antenna components means dedicated RF test ports are 
becoming increasingly scarce.  Additionally, these systems 
tend to operate using complex waveforms meaning the CW 
signals, as required by standard VNAs and receivers are also 
unavailable.  The adoption of array technology, such as that 
employed within modern massive multiple input multiple 
output (MIMO) antennas means that there is also a strong 
desire to perform back-projection imaging which provides non-
destructive, non-invasive, antenna aperture diagnostics which 
also requires phase information to yield useful images of the 
element excitations. 

Phase-less measurements can be broadly divided into three 
categories: multiple magnitude measurement techniques, 
typically requiring four separate intensity measurements, 
indirect holographic techniques, which require separate range 
illuminator(s) and far higher spatial sampling rates, and lastly 
multiple scan based techniques [4]. Of these, multiple scan 
based post-processing approaches have largely emerged as the 
prevailing strategy for tackling these types of measurement 
problems which is most probably a result of the absence of the 
need for additional specialist measurement equipment, such as 
RF circuits etc., they can utilise the same sampling rate, and 
they leverage straight forward but fairly intensive numerical 
post-processing.  Thus, this non-linear inverse problem is 
generally approached using an iterative alternating projection 
based processing scheme which utilises the efficient fast 
Fourier transform.  Here, the complex wave amplitude is 
derived from magnitude only measurements that are taken over 
a scanning surface where some specific change has been 
introduced.  This difference between the respective intensity 
patterns drives the convergence of the algorithm.  This is 
clearly a demanding task as there are an infinite number of 
complex functions with the same intensity distributions with 
only the band-limited, spatially limited nature of the fields to 
reduce the complexity and size of the search domain.  Although 
the recovery algorithm can take many forms, most commonly 
the AUT-to-probe separation is changed between scans and the 
analytical relationship that exists between the respective probe 
signals is used to determine the missing phase information.  
This is important as these sorts of non-convex problems 
generally converge fairly slowly, are sensitive to the 
initialisation of the boundary values, are liable to producing 
false solutions (i.e. local optima) and can be limited by 



measurement truncation effects.  When using a typical iterative 
Fourier phase retrieval algorithm, the critical steps can be 
summarised as illustrated in Figure 1, [5]. 

1. Measure the amplitude of the field over plane 1. 
2. Measure the amplitude of the field over plane 2. 

3. Guess the initial phase over plane 1. 

4. Calculate the propagated AUT aperture fields to plane 2 from plane 
1. 

5. Replace the amplitude estimation at plane 2 with the measured 

amplitude at plane 2. 
6. Calculate the back-propagated fields to plane 1 from plane 2. 

7. Replace the amplitude estimation at plane 1 with the measured 

amplitude at plane 1. 
8. Repeat steps 4 to 7 until reconstructed amplitude on plane 1 (or plane 

2) has converged to within a prescribed tolerance. 

9. Transform the reconstructed complex fields to the far-field using a 

standard algorithm. 

Figure 1: Plane-to-plane phase retrieval algorithm. 

These routines are generally sensitive to the degree of 
difference between the two intensity only near-field 
measurements, and the quality of the initialising phase 
estimate.  So, as the ability of the measurement engineer to 
choose the form of the intensity measurements is 
comparatively limited, it is then very important that the initial 
guess of the phase function does not introduce any non-
physical effects that will either slow the convergence of the 
algorithm, or result in the algorithm becoming stagnated in 
some undesirable, non-optimum solution. Obtaining a reliable 
initialising phase estimate is important since differing phase 
functions with the same amplitude data will inevitably result in 
encountering different algorithm performance. One such 
example of this behaviour is that of the electronically scanned 
array antenna when the main-beam is not aligned with the 
positive z-axis of the antenna measurement system, i.e. the 
normal to the planar acquisition surface.  Here, it can be easily 
shown that the absence of a priori knowledge of the scan 
direction will often result in the incorrect recovery of the near-
field phase and an inability to reliably predict the 
corresponding far-field antenna pattern. This is particularly true 
of the orthogonal, cross-polarised component where there is a 
further question relating to the relative phase relationship 
between the two tangential orthogonal electric field 
components. The lack of a grantee of the existence of, or ability 
to determine, a unique solution is of particular concern since, as 
noted above the measurement of active Massive MIMO 
antennas falls into exactly this class of measurement problems. 
This is clear motivation for the development of robust 
strategies for the postulation of appropriate initialising phase 
functions to which the remainder of this paper is devoted. 

II. MACHINE LEARNING 

During the past few years there has been a very significant 
growth in interest in Artificial Intelligence (AI) and Machine 
Learning (ML), and more specifically in the use of artificial 
neural networks (ANN). The technique of ANN employs 
algorithms to parse data, learn from that data, and then make 
informed decisions based on what has been learnt. ANNs 
utilise algorithms, specifically matrices, in layers, to create 
artificial neural networks that can learn and make “intelligent” 
decisions. ANN based techniques have been shown to be 

highly effective in the fields of image classification, speech 
processing, etc. There are numerous examples where ANN 
aided research has been found to be capable of detecting 
minute details with images which were not discernible by the 
human eye, and which have been utilised, for example, in the 
medical field [5]. These have also been shown to be of utility in 
tackling complex electromagnetic tasks such as the design and 
optimal parameter extraction for antennas, beam-forming 
algorithms for adaptive antenna arrays, and data interpretation 
for radar etc. Largely however, in the field of electromagnetics 
the application has been focused on the acceleration of the 
simulation core, allowing optimisations by replacing the full-
wave simulation with a previously initialized neural network 
[6]. However at the time of writing, the authors are not aware 
of any contributions to open literature devoted to its application 
in the field of antenna metrology. However, direction of arrival 
(DoA) estimation is a problem that has been successfully 
tackled using ML approaches with several papers being 
devoted to this area of research one of which successfully used 
a deep neural network (DNN) to sense signals arriving within a 
120 degree sector from a linear array antenna [7]. Encouraged 
by this, and by way of establishing a proof of concept, the 
problem of deriving an estimation of the initialising phase 
distribution within an iterative, Fourier phase recovery 
algorithm for use with planar near-field antenna measurements 
was chosen as it is closely related to the DoA problem.  An 
active, electronic beam-steering, mm-wave, Massive MIMO, 
antennas for 5G New Radio applications operating at FR2 was 
selected as being the test antenna which, as noted above, is a 
well know application where industry is searching for solutions 
for phase-less antenna measurements. ML was used to provide 
as accurate an initialising estimation for the phase function as 
was practicable with this being purely predicated upon the 
intensity only measurements.  The main advantage of this 
approach is expected to be the reduced computational time and 
increased stability when compared to conventional numerical 
algorithms, e.g. least squares function fitting etc., and the 
absence of the need for detailed antenna information. That is to 
say, we are using the ML to train algorithms to learn from and 
act on data without being explicitly programmed for that 
specific task. 

III. CONVOLUTIONAL NEURAL NETWORK 

A complete discussion of the AI algorithm and its 
development is clearly beyond the scope of this paper, however 
we shall now provide an overview of the technique 
highlighting some of the more important aspects. For the proof 
of concept a convolutional neural network (CNN) based on 
deep learning techniques has been implemented. Considering 
the nature of an amplitude only planar measurement, the input 
of the CNN is modelled around a typical image input 
processing layer structure, i.e. each measurement point 
corresponds to a single pixel within the input image.  Thus, the 
so called “receptive field” size is determined by the number of 
measurement points available in the amplitude data.  The 
receptive field [8] is then further condensed by a sequence of 
convolution layers comprising a multilayer perception, which is 
one of the more straight forward approaches. 

The output of the CNN can be configured, among others, as 
a regression or a classification type output. The advantage of 



the regression output type is that it allows a higher resolution 
result than the training input data provided. However, the 
complexity, especially in the case of multiple output 
parameters rises exponentially. Therefore, in the present case 
the network was chosen to have an output where the 
dimensionality of the data was categorical.  This means the 
algorithm chooses between a discrete set of previously defined 
categorical elements, e.g. as in the classical example of 
choosing between a bird, dog or cat, or recognition of hand 
written alphanumeric characters. 

 
(a) (b) 

Figure 2: ANN Layer graph showing hidden layers and skip branch (a) 

and ANN loss over training over iterations. 

The concept of a neural network was inspired by the brain 
only here the neurons are numbers, containing values between 
zero and one, in a vector [10].  The value zero corresponds to 
inactivity whilst one denotes activity.  With this first, i.e. input, 
layer of our network comprising the M by N elements within 
the near-field amplitude only measurement.  The last layer will 
contain K by L neurons representing the discretized set of 
possible scan angles.  The activation of these neurons, which 
again comprises a number between zero and one, represents the 
likelihood, i.e. probability, that a given near-field image 
corresponds to a particular scan angle.  There are a number of 
layers in-between, called the hidden layers, and each of these 
will contain a number of neurons.  The number of hidden 
layers within the network and the number of neurons is largely 
arbitrary, and can be varied to maximise the effectiveness of 
the overall artificial network.  In our case however, each 
successive hidden layer contains fewer neurons than the last 
thereby condensing the large number of inputs to the smaller 
constringed number of possible outputs.  In this 
implementation we used three hidden layers and these can be 
seen presented in Figure 2(a), shown in the left hand branch. 

The training process is used to configure, i.e. optimise, the 
way in which one layer influences the next.  This process 
assigns weights to the connections between the various neurons 
in one layer and the next.  These weights will be positive or 
negative to denote the strength of the attraction or repulsion.  
The summation of these weights multiplied by the activation of 
the respective neurons provides a measure of how strongly the 
neurons in the first layer are connected to a neuron in the next 
layer.  However, we require this weighted sum to fall within 
the range 0 to 1, and so we use a function to convert the various 
weights into this range.  Initially the Sigmoid function was 
used for this task which is a function that exhibits a 
characteristic “S”-shaped or sigmoid curve. More recently 
however, the rectified linear unit, ReLU, function has been 
adopted for this normalisation task as it has been found to yield 
networks that are far more easily trained, and that is especially 
true for the case of deep neural networks such as those used 
here.  Additionally, and following the biological analogy, we 

would like for the neuron to be activated only if the weighted 
sum is larger than some defined bias value before the neuron 
becomes meaningfully active.  We therefore add this bias 
before passing the weighted sum through the ReLU function.  
This task is performed for every neuron in this first hidden 
layer, each of which will have a different bias.  This is then 
repeated for every layer within the artificial neural network.  
This provides a great deal of different weights and biases that 
can be tuned during the learning process.  Mathematically, this 
can be expressed as a weight matrix multiplied by the column 
vector of measurements which is added to the column vector of 
the biases.  The ReLU function is then applied to every element 
within the resulting column vector to produce the transition 
between the neurons in one layer and next.  This form of linear 
algebra can be seen to be of the form of convolution, and hence 
the name, i.e. convolutional neural network (CNN) 
configuration which can be numerically implemented very 
efficiently.  The final step in the analysis is to compute the 
probability that the identified categories of discrete azimuth 
and elevation scan angle is the true answer, and is denoted by 
the Softmax layer in Figure 2. The body of the network is then 
divided in a main branch containing two basic steps and a skip 
branch containing only one basic step. The division in branches 
and adding skip connections improves the convergence of the 
model by decreasing the vanishing gradient issue and thus 
improving the stability of the back propagation [8]. 

The training process comprises determining the right set of 
weights and biases that allows us to classify a given near-field 
intensity measurement to a given discrete azimuth and 
elevation scan angle.  We then hope that the set of weights and 
biases that we have determined from the known training data 
generalises to other data that the ANN has not been exposed to. 
Typically we would randomly assign vales to the weights and 
biases.  We then pass the data through the ANN and compare 
the output to the known correct output and measure the error.  
This cost function can be the sum of the squares of the 
difference between the output vector and the true answer 
vector.  We can then compute the average cost across all of the 
training examples to measure the success of the ANN and then 
search for the minimum by adjusting the weights and biases to 
optimise the effectiveness of the network, as we are not 
permitted to adjust the activations, i.e. the values contained 
within the neurons in the various layers in the ANN.  This 
optimisation process is called back propagation and uses 
efficient stochastic gradient descent.  We then repeat this for 
each of the training examples to train the ANN.  This 
difference is tracked and indicated as the Loss parameter as 
shown in Figure 2 (b). A loss of 0 meaning the output vector 
and the true answer are equal.  However, a more efficient 
strategy is to break the data up into subsets and to optimise 
over each of these sets.  This process is termed an epoch and 
we may work through many such epochs during the overall 
training process.  One aspect of this is that for the ANN to be 
effective; we need a lot of training data and even then, the 
tightly constrained nature of this training setup means the ANN 
can confidently predict the wrong answer! 

IV. TRANING AND TESTING THE CNN 

The proof of concept presented here is based on a 
simulation of the planar near-field measurement of a beam 
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scanning antenna at 28 GHz.  The antenna diameter was set to 
0.254 m (10 inches), and the beam scanning was limited to 0.5⁰ 

steps up to 17.5⁰ in the polar θ direction, and 10⁰ steps in the 

azimuthal φ direction where we have used conventional polar 
spherical coordinate system with the positive z-axis aligned 
with the normal to the array antenna’s aperture plane.  This 
results in a dataset of 1,296 different scan angles. The training 
was then performed to a maximum of 32 epochs.  Figure 3 
shows a random selection of the amplitude distribution plots.  
From inspection of these, it is clearly a very difficult task for a 
human, by eye, to determine which measurement corresponds 
to which scan angle.  Here, the antenna measurement was 
simulated with the AUT to probe distance of 3 wavelengths (λ) 
and at 36λ having a length and width of approximately 0.762 m 

(30”) at 
�

�
� sample spacing.  Here, the nearer acquisition plane 

is denoted as plane 1 and the further away case as plane 2.  

 

Figure 3: Random selection of amplitude distribution 

for various electronic scan angles. 
For the purposes of efficiency, the training of the ANN was 

performed utilising the workstation GPU.  The GPU memory 
requirement of the network training scales exponentially with 
the size of the input array, i.e. image pixel count, and thus it 
makes sense to limit the number of points.  This reduction can 
be achieved by limiting both the length and width as well as 
increasing the step size of the simulated acquisition.  It was 
found that for this particular proof of concept, error free beam 
scanning angle detection was possible, in the noiseless case, 
when sampling using half wavelength data-point spacing and 
that this fitted within the available GPU memory. It should be 
noted here that although the data presented to the CNN must 
have the same sample spacing and geometric locations of the 
measured points, however the real measured data can be under 
sampled electronically to match the CNN required input grid, 
as a higher sampling rate can be beneficial for the further 
processing steps. 

The trained CNN was tested with various beam scanning 
angles and was found to be flawless in the noiseless case. 
While adding increasing amounts of white noise it was found 
that classification errors started to be encountered at a noise 
level of 63 dB below peak, with an overall error of 1% and 

which grew to an error of 18% at a noise level of 53 dB below 
peak.  Figure 4 shows the resulting confusion matrix for each 
θ-angle (with flattened φ-angle dimension).  This is a 
commonly used method of assessing how well a machine 
learning ANN performed in terms of classifying a given dataset 
[9].  A confusion matrix presents a tabular layout of the 
different possible outcomes of the prediction and results of a 
classification problem, and attempts to help visualise the 
outcomes.  Thus, it plots a table of all the predicted and actual 
values of the classifier. 

Here, it can be seen that for some beam scanning angles in 

the θ-direction the algorithm starts to provide an incorrect 
answer in the presence of increased noise levels.  However, 
when further investigated it was found that for many cases the 
wrong answer is limited to jumping to a neighbouring class.  
Thus, providing there are sufficient angles within the detection 
layer, the difference between the true and estimated scan angle 
will be small resulting in an initialisation phase that will be 
very close to the desired phase function.  This leads to the 
question how good a phase-guess is required for the phase-
recovery algorithm to still converge and to run efficiently.  This 
question couples conversely with the question as to how dense 
the classification grid is required to be to result in a sufficiently 
low error in the corresponding far-field amplitude distribution. 

 

(a) 

 

(b) 

Figure 4: Confusion matrix with white noise at (a top) 63 and  

(b bottom) 53 dB below peak. 

V. VALIDATION OF APPLICABILITY TO THE FOURIER METHOD 

Even though, arguably, in the case of a correct guess of the 
beam scanning angle the far-field amplitude reconstruction 
achieves the highest accuracy. That is to say, if the phase 
distribution is merely incorporated with the measured 
amplitude and a single plane is used for the near-field to far-
field transformation, as was discussed above in section IV, it is 
ill-advised in practice, due to the nature of the classification the 



angle prediction has only limited resolution and further in the 
presence of noise can result in misclassifications.  Therefore, 
we are still required to employ the iterative plane-to-plate 
phase retrieval algorithm after the inclusion of the estimated 
phase distribution in the initialisation step. 

In the test case the antenna beam scanning angle was set to 

7⁰ in θ and 0⁰ in φ. This configuration allows for easy 
extraction and comparison of the antenna main beam pointing 

by merely displaying θ-cuts.  The plane-to-plane algorithm was 
configured such that it stops when either a predefined 
convergence has been reached, or a maximum of 10,000 
iterations have been performed.  The convergence was 
calculated as the change rate of the phase distribution when 
expressed in dB.  It was found that if this rate has reached a 
level of -125 dB, there are no further remarkable changes in the 
far-field amplitude pattern.  It is noted here that the mentioned 
convergence is not an indication for a successful recovery, it 
merely indicates that no further improvements were gained and 
is an artefact of the nature of this inverse problem.  As noted 
above, the phase retrieval algorithm was not the primary 
purpose of this paper, and the open literature contains examples 
of other convergence criteria and measures of adjacency that 
have been explored [5]. 

In all of the following results the far-field amplitude and 
phase distribution is calculated both from the near-field data of 
plane 1. For the reference calculation the ideal amplitude and 
phase distribution is used and for the recovered calculation the 
amplitude and phase distribution after the application of the 
algorithm is used (where the algorithm dictates the amplitude 
to be the same as the measured data, here the ideal case).  The 
difference between the reference and the recovered far-field 
amplitude patterns are represented by the equivalent multipath 
level (EMPL) [5].   

I 

II 

(a) (b) 

Figure 5: Recovered Amplitude (I) and Phase (II) Pattern, without (a) and 
with (b) initial beam scanning angle detection. 

In Figure 5, the recovered amplitude and phase of an 
amplitude only measurement is shown on the left hand side 
together with a correctly guessed 7⁰ beam scanning angle on 
the right.  It can be seen that without any initial phase guess the 
plane-to-plane algorithm fails completely, but with the initial 
phase guess the EMPL is at a very low level.  While reviewing 

the far-field phase distribution, Figure 5 (II), it is noted that 
also with an initialized phase distribution the plane-to-plane 
algorithm cannot be used to recover the far-field phase in a 
completely reliable way and thus any further processing of the 
far-field polarisation vector will most likely provide erroneous 
results. 

The recovered near-field phase distribution compared to the 
reference phase distribution, cf. Figure 6, shows a quite 
interesting result. It can be seen here that without any initial 
beam scanning angle detection, the phase guess completely 
fails, and for the case including initialisation of the phase 
works only well within the region of space that the antenna 
physically occupies.  What is also interesting is that within the 
region the antenna physically occupies the recovery seemingly 
has higher accuracy than what would be initially guessed while 
reviewing the far-field phase Figure 5 (II). 

(a) (b) (c) 

Figure 6: Near-Field Phase Distribution at Plane 1, Reference (a), 

Recovered without (b) and with (c) initial beam scanning angle detection 
In Figure 7 the far-field amplitude patterns are shown again 

however in this case the impact of an erroneous classification 
of the beam scanning angle is examined.  On the left hand side 
the result is shown for the same 7⁰ beam scanning angle being 
classified as 6.5⁰ and on the right hand side it being classified 
as 7.5⁰. Here, it can be clearly seen that even in presence of an 
erroneous classification, the accuracy of the resulting far-field 
amplitude pattern still far exceeds the result without initial 
guess thereby further confirming the utility and robustness of 
the ANN based processing. 

 
(a) 

 
(b) 

Figure 7: Recovered Amplitude Pattern with erroneous beam  

scanning detection at 6.5⁰ (a) and 7.5⁰ (b) angle 

The calculated far-field, plane wave spectrum over the UV-
plane, for both the measured (ideal) and the recovered case 
with initial phase guess, show some further interesting details, 
Figure 8. Here, it can be seen that for the amplitude (I) in the 
recovered case the main beam and its location are correctly 
derived, while further away from the main beam interference 
starts to increase. More interestingly though, while looking at 
the phase distribution, the measured case shows the expected 
parabolic phase taper in concentric rings around the pattern 
peak, while the recovered pattern seems to show both the 
expected concentric rings together with a dominant interference 
pattern which appears to originate from a copy of the same 
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concentric ring pattern at an offset angle in the same direction 
of the beam scanning angle. One might consider this as 
originating from an aliasing effect which needs further 
research, but is something that is not aligned with the primary 
thrust of the AI research focus of this paper. 

(I) 

 

(II) 

(a) (b) 

 Figure 8: Far-Field amplitude (I) and phase (II) over UV-plane 

transformed from measured (a) and recovered (b) plane 2 Near-

Field data 

VI. SUMMARY AND OUTLOOK 

In this work a ML based approach is suggested to provide 
the initialisation of the phase distribution of a phase-less near-
field antenna measurement.  To show the applicability as a 
proof of concept a beam scanning application was used to 
demonstrate the ability to classify the scanning angle. The 
detection was further tested under noisy conditions.  It was 
further shown that without any initialisation the plane-to-plane 
algorithm fails at recovering the far-field amplitude 
distribution.  However, using an AI generated initial phase 
estimation the standard iterative plane-to-plane algorithm is 
able to successfully recover the far-field antenna pattern, even 
if the recovered beam scanning angle has minor deviations 
from the true scan angle. 

While inherently a regression based output instead of the 
currently implemented classification method increases the 
complexity of the algorithm, this will eventually lead to a 
higher accuracy of the detected beam scanning angle, as in 
reality minute differences in production lead to unexpected 
scanning angles which are an inherent reason for the 
application of antenna production testing.  While the expansion 
of the output to a regression type has merit in terms of beam 

scanning angle detection, the classification output can continue 
to promise to be more valuable in the case when antenna 
detection is extended to the detection of different antenna types 
and configurations. The inverse DL algorithms which are able 
to generate images can then be considered to be interesting to 
generate the initializing phase distribution directly.  As this 
represents the first contribution to the open literature in this 
field, a great deal of work is still required.  This will include 
examining the use of the ANN with different antenna types, 
configurations and refining and optimisation the ANN learning 
procedure. 
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