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Abstract— Mode filtering has been shown to be very 

effective in suppressing spurious reflections in antenna 

measurements.  Specifically, it has been well documented 

that in the quasi-far-field, the two polarizations are 

decoupled, making it possible to apply standard cylindrical 

near-field theory on the amplitude and phase data acquired 

from a single polarization measurement on a great circle cut 

[1]. The method was further extended to allow data 

collected from an unequally spaced angular abscissa by 

formulating the solution as a pseudo-inversion of the 

Fourier matrix [2].  This formulation, however, can be 

prone to spectral leakage because of nonorthogonality of the 

Fourier basis on an irregularly sampled grid, especially 

when the positions deviate significantly from the regular 

grid [2].  In this paper, we propose to use Compressed 

Sensing (CS) to compute the Cylindrical Mode Coefficients 

(CMCs), which improves the signal to noise ratio, allowing 

more accurate recovery of the prominent modes.  The CS 

recovery is tenable because with the coordinate translation 

of the measurement pattern to the rotation center, the 

Maximum Radial Extent (MRE) of the antenna under test 

is greatly reduced, making CMCs quite sparse in the mode 

domain.  The novel application of CS presented in this 

paper further expands the generality of the mode filtering 

method, which is now applicable to under-sampled data (at 

below the Nyquist rate) acquired on positions that grossly 

deviate from the equally-spaced regular grid. 

Index Terms—Cylindrical Mode Filtering, Compressed 

Sensing, Reflection Suppression, Echo Reduction. 

I. INTRODUCTION 

In many applications, it is often sufficient to acquire the far-

field patterns of an antenna on the two primary great circle cuts, 

rather than obtaining the complete two-dimensional pattern.  

Typically, these measurements are conducted in an anechoic 

chamber at a far-field distance, or in a Compact Antenna Test 

Range (CATR).  To reduce the effects of multipath reflections, 

it is well documented [1] that by rotating the antenna under test 

with an intentional positional offset, and subsequently applying 

a mathematical translation on the pattern data to translate the 

antenna back to the rotation center, it is possible to filter out the 

modes associated with the multipath reflections.  Under quasi 

or true far-field conditions, the two orthogonal field 

components are decoupled.  The cylindrical mode coefficients 

(CMCs) are related to the co-polarized field component by the 

Fourier Transform. When the measurement is performed on an 

equally spaced abscissa, the conversion from the spatial domain 

to the spectrum domain can be efficiently computed via the Fast 

Fourier Transform (FFT).  It is, however, not always convenient 

or possible to collect data precisely on a regular grid, either 

because of equipment accuracy or time constraints.  In reference 

2, one of the authors of this present paper explored the 

possibility of obtaining the mode coefficients by solving a 

system of simultaneous equations using a direct, full matrix 

inversion from the irregularly spaced data.  This entails forming 

the Fourier matrix with unequal spacings, and pseudo inverting 

the matrix, for example, by using LSQR algorithm [3].  With 

the CMCs computed, a filtering function can then be applied to 

retain the modes associated with the physical dimension of the 

antenna, suppressing the effects of spurious reflections in the 

environment which appear as additional parasitic sources.  In 

[2], the authors intentionally introduced a large scattering object 

in a CATR.  Here, antenna pattern data was acquired with and 

without the perturbing scattering object.  The results in [2] 

demonstrated that as long as the acquired pattern data is not 

excessively unevenly distributed (with angular positions 

deviating from the ideal by up to circa 0.3°), the matrix 

inversion method could effectively and accurately reveal the 

underlying antenna pattern. 

The highest order cylindrical modes which can be computed 

are determined by the angular sampling rate.  To accurately 

recover the modes associated with the antenna, the Nyquist 

sampling requirement states that the data density should, on 

average, be sufficiently high to accommodate any significant 

higher order modes, including those from the scatterers.  This 

prevents aliases from contaminating the antenna modes.  

Furthermore, unevenly sampled data can result in spectrum 

leakage [4].  This occurs because the Fourier basis loses its 

orthogonality when the sampling grid is irregular.  In this paper, 

we will provide further illustration of this phenomenon.  

Therefore, there exists a practical limitation on the degree of 

“regularity” of the grid.  In practical scenarios, this limitation 

becomes relevant, such as when qualifying an EMC anechoic 



chamber using the cylindrical mode filtering method [5].  In 

such cases, the angular accuracy of the positioning equipment 

can often be on the order of ±1°.   

It is observed that in the mode filtering scheme described 

above, the antenna modes occupy only the low order modes.  

The coordinate translation to relocate the transmit antenna to 

the rotation center effectively reduces the Maximum Radial 

Extent (MRE), which represents the farthest distance the 

antenna extends from the rotation center. As a result, the 

number of significant CMC terms is greatly reduced since, 

according to cylindrical mode theory, the mode cutoff is 

determined by the electrical size of the MRE.  In other words, 

the relevant CMCs are sparsely distributed.  This opens up the 

possibility of treating the problem as a Compressed Sensing 

(CS) recovery problem.  Recent advancements in CS algorithms 

[6, 7] have made it feasible to effectively solve such problems.  

Compressed Sensing (CS) can leverage the sparsity of data in 

the Fourier basis by aiming for a parsimonious solution that 

contains the fewest non-zero CMCs.  By formulating the 

problem as a CS problem, we not only reduce the number of 

required sampling points (which can be far fewer than what is 

prescribed by the Nyquist criterion), but also and crucially, we 

eliminate the need for data to be collected on an evenly spaced 

abscissa.  In fact, random or pseudo-random sampling becomes 

a prerequisite and is a distinctive characteristic of the CS 

approach.  In this paper, we will employ the same QMUL 

CATR measurement dataset as was used in [1, 2], but here with 

an even greater level of randomness and down-sampling.  Our 

aim here is to demonstrate that the CS algorithm can effectively 

reconstruct the antenna patterns, even with significantly relaxed 

sampling requirements.  This involves utilizing a substantially 

smaller number of samples and data points that deviate 

considerably from the ideal positions.  The novel utilization of 

the CS algorithm in mode filtering applications introduced here 

significantly broadens its applicability, enabling sub-Nyquist 

sampling and considerably reducing the requirements for 

positioning equipment accuracy, although requirements for 

precision remain. 

II. FORMULATION OF THE CS SOLUTION 

To facilitate the separation of antenna modes from multipath 
effects, the Antenna Under Test (AUT) is intentionally 
positioned off-center from the rotation axis.  The initial 
postprocessing step is to reference the antenna pattern back to 
the rotation center.  In the far-field, this is achieved by a phase 
adjustment: 

���� → ∞, �	 = ��� → ∞, �	���∙�� (1) 

where ���� → ∞, �	  is the translated electric field vector;  ��� → ∞, �	 is the electric field before translation; rm denotes the 
displacement vector between the center of the measurement 
coordinate system and the center of the current AUT; k0 is the 
free-space wave number.  The coordinate system is defined per 
the usual spherical/cylindrical coordinate convention (where 
the rotation axis is �̂, and the propagation direction is along ��.  
The center of rotation is at the origin).  

The primary factor that leads to the sparsity of CMCs in the 

mode domain is the coordinate translation accomplished by (1). 

This translation significantly reduces the effective MRE, 

thereby concentrating the antenna modes primarily in the lower 

orders.   

The next step is to transform the spatial domain data to the 

spectrum domain, represented by the sum of CMCs multiplied 

by their Fourier basis functions.  The relationship is given by [1, 

2], 

�� = −2 � ���
���� �� e"�� 

�# = −2� � ���
���� ��$e"�� 
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(2b) 

where �� ,$
 are the complex CMCs for the TE and TM 

polarizations, respectively; �#,�  are the electric field 

representing data acquired for vertical or horizontal 
polarizations, respectively.  When the values �#,� are obtained 

on a regular grid, we can solve (2a) and (2b) using the FFT. 
However, if the values are not acquired on a regular grid, we 
need to express the equations in the form %� = & .  As an 
example, (2b) for the vertically polarized antennas becomes, 
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⎣⎢
⎢⎢
⎡��$+�,- ., ��$+�,- ./ ⋯ ��$+�,- .1��$+�/- ., ⋱ ⋮⋮ ⋮��$+�4- ., ��$+�4- ./ ⋯ ��$+�4- .1⎦⎥

⎥⎥
⎤

⎣⎢⎢
⎢⎡ �.,�.,$�.,8,�.,8,$⋮�.9 �.1$ ⎦⎥⎥

⎥⎤

= :�#,�#/⋮�#4
; 

 

(3) 

Here, < is the range of angular rotation.  For example, < = 2= 
for a full rotation; >? is the turntable rotation angle at the mth 
position (@ = 1 … C); D� is the mode index (E = 1 … F	.  The 

electric field vector on the right-hand side [�#, … �#4]- is 

known from the far-field measurement.  We seek to invert (3) to 

solve for the N unknown mode coefficients [�.,�.,$ … �.9 �.1$ ]<
.  

The formulation presented in (3) provides increased flexibility 
compared to the conventional FFT based approach.  First, there 
are M measurements (or angular data points) and N unknowns 
(i.e. CMCs).  Unlike for the case of the FFT, M and N do not 
need to be equal. Secondly, the angular step size can vary, i.e., 
allowing irregular step sizes.  In the case of M > N, we have an 
overdetermined system of equations.  This is the case treated in 
[2], where (3) is solved in a least squares sense by matrix pseudo 
inversion.  When M < N, we have an underdetermined system of 
equations, for which infinite number of solutions can exist.  
Within the CS scheme, an additional constraint is imposed to 
ensure the uniqueness of the solution.  Specifically, we aim to 
obtain a sparse solution that has the minimum number of non-
zero mode coefficients (CMCs).  That is,   min { ‖�‖N ∶  %� =  &} (4) 

where the quantity ‖�‖N denotes the number of non-zero terms 
in the vector �  (known as l0-norm).  Eq. (4) is known to be 
computationally intractable (combinatorically complex).  One 
approach is to solve for a more relaxed surrogate l1 optimization, 
i.e.,  



min { ‖�‖ ∶  %� =  &} (5) 

where ‖�‖ is the l1-norm of the vector � .  A comprehensive 
discussion of the CS principle is beyond the scope of this paper. 
Interested readers can find more information in the open 
literature, e.g. [6, 7].  To efficiently solve (5), various software 
packages exist, e.g. CVX [8], YALL1 [9], and SPGL1 [10] 
which are readily accessible and can be employed.  For this 
study, we have chosen to utilize the YALL1 algorithm due to its 
perceived balance of efficiency and accuracy [11]. Additionally, 
we incorporated reweighted l1 minimization [12, 13] to further 
enhance the recovery performance. 

III. APPLICATION TO MEASUREMENT DATA 

The measurement data utilized in this study corresponds to 

the dataset presented in [1, 2], which was collected at the Queen 

Mary University of London (QMUL) mm-wave CATR. The 

vector pattern data was collected on an X-band corrugated horn 

antenna.  The antenna was offset from the rotation center by 

approximately 0.145 m.  The single offset mm-wave CATR 

reflector has a diameter of 3 meters.  The experimental setup is 

depicted in Fig. 1, and for more detailed information, please 

refer to [1, 2].  In Fig. 1, a flat metallic scatterer measuring 

0.6 m x 0.6 m was introduced in a specular region to perturb the 

antenna pattern deliberately and can be seen to the right hand 

side.  This deliberate perturbation served as a severe case of 

contamination to test the robustness of the mode filtering 

algorithm.  The raw dataset comprises over 3,800 measurement 

points, acquired on a regular time basis, and was approximately 

evenly spaced in an angular domain, covering an azimuthal 

range from -100o to 100o.  This oversampling greatly exceeds 

the Nyquist criteria, allowing for easy down-sampling for the 

various scenarios needed in this investigation.  

 
Fig. 1. X-band corrugated horn AUT installed within QMUL CATR 

shown together with 0.6 m X 0.6 m reflecting plate.  

Random and incoherent sampling [6,7] is preferred per the 

CS theory.  In (3), the [A] matrix denotes the Fourier ensemble 

(Discrete Fourier Transform, or DFT vectors).  Randomly 

selecting rows from the DFT matrix guarantees that we have a 

linearly independent system of equations and hence promotes a 

unique solution.  It is also known that the DFT basis is not 

orthogonal on an irregular grid.  Therefore, it is suspected that 

“too much” randomness may also be detrimental, which can 

introduce excessive spectrum leakage noise, not to mention the 

potential avoidance of potential specific physical features.  Here, 

we use two different sampling schemes to investigate this effect. 

A. Jittered Sampling 

In the first case, we down-sample the dataset to M = 121 

points using a “pseudo random” scheme.  In this scheme, we 

divide the 200o azimuthal range (of over 3,800 data points) 

evenly into 121 “bins”.  In each bin, we randomly select a 

sample.  This is also referred to as “smart” or “jittered” 

sampling [14-17].   

 
Fig. 2. Far-field amplitude plot of horn measured unperturbed and 

perturbed, compared against Compressing Sensing using jittered 

sampling.  

 

Fig. 3. Plot of amplitude of CMCs as obtained from Compressed 

Sensing using jittered sampling. 

Data selected under this scheme has a constrained 

randomness in that they satisfy the incoherency requirements of 

the CS, but unlike completely random sampling are not prone 

to leaving large gaps between adjacent sample points.  In the 

CS solution, we set N = 401, this represents the number of 

unknow CMCs.  This number should be chosen large enough to 

include any significant higher order modes which may exist in 

the raw data.  Fig. 2 shows the antenna pattern results using the 
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CS algorithm.  Fig. 3 shows the amplitude of the CMCs as 

obtained from the CS using the jittered sampling scheme. 

The actual sample positions are projected onto the CS curve 

(as the blue dots in Figs. 2 and 4) to help visualize how the data 

are sampled.  The maximum angular spacing between adjacent 

data points is 2.9o, which is larger than the sample spacing 

suggested by the classical sampling theorem. 

B. Uncontrained Random Sampling 

In the second sampling scheme, we once again sample M = 

121 points, but this time they are randomly selected from the 

raw dataset without any additional constraints.  The angular 

spacings between any adjacent points vary from 0.051o to 

8.236o, the latter being many times the sample spacing 

suggested by the classical sampling theorem.  Fig. 4 illustrates 

the amplitude of the antenna pattern, while Fig. 5 displays the 

corresponding reconstructed CMCs.  Despite a slightly higher 

error compared to the jittered sampling scheme, the CS 

algorithm still manages to reasonably recover the antenna 

pattern.  However, the direct matrix inversion using LSQR fails 

completely when using these randomly selected data.  The 

corresponding spectrum reveals that the noise floor is too high 

for the matrix inversion method, with only a 20 dB difference 

from the main peak and only a few low order modes being 

reproduced reliably. 

 

 
Fig. 4. Far-field amplitude plot of horn measured unperturbed and 

perturbed, and compared against Compressing Sensing using true 

random sampling. 

It is well understood that under-sampling on a regular grid 

leads to aliasing, which interferes with the desired modes in a 

coherent manner.  On the other hand, random under-sampling 

tends to spread the aliased signals over a broader spectrum, 

resulting in wideband noise-like artifacts.  In the context of 

Compressed Sensing, spread-out “noise” actually creates a 

favorable condition for recovery.  According to the CS theory 

[7], the accurate recovery of [x] relies on two conditions:  

(1) [x] being sufficiently sparse, and  

(2) the under-sampling artifacts being incoherent. 

Here, it can be shown that broadband spectral artifacts have a 

diminished influence on the CS recovery process. This can be 

attributed to the nonlinear nature of the reconstruction, which 

prioritizes both sparsity and data consistency, consequently 

confining the detrimental effects of broadband spectral artifacts 

to only the non-zero spectral components. The same cannot be 

said for the full matrix inversion method using LSQR. As the 

least squares solution is typically full ranked, the entire leakage 

contributes to the matrix inversion, i.e., the solution of the 

system of equations. 

 

Fig. 5. Plot of amplitude of CMCs as obtained from Compressed 

Sensing using true random sampling. 

The effect of spectral leakage can be illustrated by examining 

the convolution matrix.  Following [14,15,18], we define the 

convolution matrix as Q ≜ STS where S is the Fourier matrix 

in (3); ST is its Hermitian transpose.  For the FFT matrix where 

data is evenly sampled and above the Nyquist rate, the 

convolution matrix STS  is fully diagonal, signifying no 

spectrum leakage.  Otherwise, a non-zero off-diagonal element 

at position (i, j) indicates that the linear reconstruction of 

element i is affected by interference from a unit impulse at 

element j≠i. In essence, the presence of non-zero off-diagonal 

elements in the convolution matrix provides an indication of the 

extent to which energy disperses from the genuine underlying 

source element to other elements. For under-sampled and 

evenly spaced signals, there are structured off-diagonal 

elements (cf. Fig. 6(a)).  These off-diagonal elements create 

aliases.  For jittered and random under-sampling, the non-zero 

off-diagonal elements are much lower in magnitude and spread 

out to almost the entire matrix (Fig 6(b) and (c)).  The second 

row of Fig. 6 ((d), (e) and (f)) shows the log magnitude of the 

middle row of the convolution matrix (i.e., representing a view 

of the convolution kernel).  An interesting observation is that in 

the vicinity of the spectrum's center, the noise level for the 

jittered sampling approach is lower compared to random 

sampling (see Fig. 6(e) in contrast to Fig. 6(f)).  This lower 

noise level results in an improved signal-to-noise ratio for the 

lower-order CMCs, which is precisely where the antenna modes 

reside and is the region within the mode domain that is of 

greatest significance.  This finding further supports the 

advantage of the jittered “smart” sampling approach over the 

truly random sampling scheme. 
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Moreover, the random sampling scheme has the potential to 

introduce very large gaps between data points.  When such large 

gaps occur, local effects that display a weak dependency on data 

from other regions may be overlooked.  Conversely, the jittered 

“smart” sampling approach ensures more comprehensive 

coverage and reduces the likelihood of missing such local 

effects. 
 

 

Fig. 6. Convolution matrix (amplitude) for (a) evenly spaced under-

sampling (b) jittered sampling (c) random sampling.  (d), (e), and (f) 

shows the mid row cut showing the level of spectral leakage. 

IV. SUMMARY AND CONCLUSION 

In this research, we present the application of Compressed 

Sensing to cylindrical mode filtering for the first time.  Our 

primary objective is to effectively suppress spurious reflections 

in one-dimensional far-field antenna pattern measurements 

while significantly relaxing the sampling requirements.  We 

demonstrate that even with sub-Nyquist sampling and data 

collected on a highly irregular grid, accurate antenna patterns 

can be recovered through post-processing techniques.  This 

significantly broadens the applicability of the mode filtering 

approach, as it allows for reduced data acquisition time and 

relaxed positional equipment accuracy. 

 

Furthermore, we investigate two sampling schemes for the 

Compressed Sensing algorithm.  Our findings reveal that the 

smart jittered approach where the gap size between adjacent 

data points is controlled yields improved mode recovery 

compared to purely random sampling. 
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