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Abstract—This paper compares and contrasts a number of 
different near-field to far-field transformation algorithms that 

can be used for the purpose of processing near-field data 
acquired using multi-axis industrial robots.  The merits and 
limitations of these various, commonly encountered algorithms 

are highlighted with comparison far-field data presented 
across a frequency range spanning 3 to 15 GHz.  Crucially, the 
paper explores the viability of using mixed mode acquisition 

geometries when performing antenna gain measurements 
where, prior to this work, several of the transforms yielded 
different transform gains, and electrical lengths.  Here, we 

verify that at 8 GHz and above, where truncation effects were 
minimal, for this circa 30 dBi gain (at 8 GHz) test antenna the 
far-field peaks were in agreement to better than ±0.02 dB, at 

3σ irrespective of the acquisition geometry and transform 
algorithm used. 

Index Kirchhoff-Huygens, Current elements, Plane-polar, 

Plane-rectilinear, Planar, Cylindrical, Spherical, Gain. 

I.  INTRODUCTION 

Electromagnetic near-field (NF) to far-field (FF) 

transformations are generally used to calculate the FF 

antenna pattern of some radiator from an acquisition of a 

sufficiently large number of NF measurements.  Early 

transformation algorithms were largely restricted to 

considering canonical geometries such as spheres, cylinders, 

or planes.  These were typically implemented employing fast 

Fourier transform (FFT) based algorithms which were 

extremely efficient, robust and are numerically very 

accurate.  Such direct inversion techniques included probe 

compensation, required only the measurement of quantities 

proportional to the electric fields, and utilised mode 

orthogonality of the field expansions in these special 

coordinate systems [1, 2, 3, 4].  This limited them to certain 

fixed measurement geometries, with regularly spaced sample 

locations with appropriately, and very carefully, oriented 

probes where in some cases those probes also needed to 

demonstrate certain symmetries.  As a result of this most NF 

measurement facilities were designed and constructed to 

adhere with these requirements and have been largely 

responsible for underpinning the reliability and tremendous 

success of the NF measurement approach. 

More recently an alternative approach has gained 

traction.  Here, greater flexibility in terms of the 

representation of the antenna and acquisition type can be 

obtained using an inverse equivalent source method.  These 

tend to utilise a discrete set of surface current densities 

defined on a meshed surface surrounding (or sometimes just 

in front of) the antenna as a spatial representation of the 

source.  Here, a discrete linear system of equations is setup 

and then solved, for example, as a pseudo inverse solution 

[1, 4, 5].  In this paper we examine several different field 

transformation algorithms highlighting their utility for use in 

modern industrial multi-axis robotic based antenna 

measurement systems, as shown in Fig. 1 below, where 

acquisitions can be taken in a variety of different modes with 

the same RF subsystem and AUT.  The purpose was twofold, 

firstly to verify the reliability of the respective transforms 

and secondly to confirm the consistency of amplitude and 

phase normalisation between them.  Here, the transformation 

approaches examined were 1) Kirchhoff-Huygens formula 

[1, 4] and current elements formula [4, 6] which are both 

physical optic based field propagation algorithms, 3) 

equivalent currents method [4, 5] which is a variation on a 

method-of-moments based approach, 4) classical spherical 

mode expansion based transform using SNIFTd [7], 5) an 

equivalent proprietary spherical mode expansion [1], 6) a 

proprietary cylindrical mode expansion based algorithm [1, 

8], 7) a proprietary accelerated plane-polar based transform 

[4] and finally, 8) a proprietary plane-rectilinear based 

transform [4]. 

 
Fig. 1. Dual multi-axis industrial robotic antenna 

measurement system, picture courtesy of Boeing. 

These eight completely different transformation 

approaches can be used to provide the equivalent far-field 

pattern of some radiator from near-field data, acquired over 

an appropriate two-dimensional surface providing the 



following remain unchanged: 1) Test antenna, 2) Frequency, 

3) Input power, 4) Loss through the RF sub-system, i.e. the 

losses through the guided wave path, IF band-width etc., 5) 

match in the feed, 6) unimportant spherical phase factor and 

inverse distance terms are divided out of the far-fields, 7) 

stable consistent transform gain through the near-field to far-

field post processing software.  With regards to item 6, 

expressly we mean that, for a positive suppressed time 

dependency, the factor, 

 
0

0

jk r
e

k r

−

 (1) 

is divided out of the computed far-field pasterns where k0 is 

the wavenumber.  This suppresses the radial dependence of 

the transformed fields meaning that with this suppressed, in 

the far-field region, one would see the same amplitude and 

phase patterns as the radial distance changes.  For example, 

we may take the planar cases as it is mathematically perhaps 

the simplest to consider, this means that the angular spectrum 

can be obtained directly from the sampled tangential near-

field components using far-field peak using [1, 4], 
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Here, the inclusion of the factor 4π/λ2 is required to 

insure that the planar transform has a gain that is equivalent 

to that of the cylindrical, spherical, etc. transforms.  

Similarly, the inclusion of the 90 degree phase change, i.e. 

the complex exponential factor in front of the integral, is 

required purely to provide consistency with the far-field 

phase pattern provided by other transforms.  Thus, for the 

same test antenna, input power, frequency, match, etc. the 

far-field amplitude and phase peak values should be the same 

for each transform.  For industrial multi-axis based antenna 

measurement systems this is particularly important as a 

single system can be used to acquire data using one of 

several modes with users wishing to be able to directly 

compare far-field measurements irrespective of the 

measurement mode used, and this of course includes the 

measurement of far-field gain. 

II. MIXED ACQUISITION MODE GAIN MEASUREMENTS 

In many cases, the gain of an antenna is obtained using 

the gain-substitution method, [1-4].  This method transfers 

the gain of a known standard to the unknown test antenna 

and can, when omitting the mismatch correction factor 

required when measuring IEEE gain as, be expressed, 

 ( )Peak Peak

AUT AUT SGA SGAG E E G= − +  (3) 

Here, GAUT is the gain of the AUT, GSGA is the gain of the 

standard gain antenna (SGA) which is assumed known a 

priori, Peak

AUTE  is the far-field pattern peak of the AUT, and 

Peak

SGAE  is the far-field pattern peak of the SGA where all of 

these quantities are in dB (i.e. logarithmic) form. 

Usually, assumption 7 above, the transform gain, is 

guaranteed by virtue of the same test system (and therefore 

geometry and transformation algorithm) being used to 

acquire both the AUT and the SGA.  However, as expounded 

above, the recent proliferation of near-field test systems 

employing multi-axis industrial robots within their great 

flexibility in their positioning sub-systems has resulted in the 

need to acquire test antennas, which for example could be 

low gain, using different acquisition geometries to SGAs, 

which are generally medium to higher gain.  In this case, 

different near-field to far-field transformation algorithms 

may be used to process the SGA data to the AUT data and 

thus, not only the stability of the transformation, but also the 

inherent gain through the transform becomes crucial if the 

application of equation (3) is to be reliable since Peak

AUT
E  and 

Peak

SGAE  depend upon the respective transform gains.  Although 

providing a stable transform gain is typically verified as part 

of the software validation procedure, as this insures 

independence from the details of the sampling interval and 

sample spacing, the relative transform gains are not typically 

cross-correlated within the validation activity as this has not 

historically been of interest or concern, because both AUT 

and SGA were measured using the same technique.  It is 

noted here, that questions relating to establishing the 

commonality of respective RF network losses through the 

guided wave paths are outside the scope of the present study.  

Furthermore, we have ignored mismatch correction [1] 

which would need to be compensated for if highly accurate 

gain measurements are required as this too is independent of 

the transform gain and electrical length.  A second method 

for computing the far-field gain of an antenna is by means of 

the direct cable connection method.  As all of the transforms 

provide the same transform gain, and electrical path length, 

the same direct cable connection formula may be used with 

far-field data obtained from any of these transforms without 

further modification.  Thus, the gain of an antenna may be 

determined using the direct gain calculation using, 

 ( )Peak

AUT AUT Probe Bypass MeasurementG E G= − +  (4) 

Here, Peak

AUTE  is the far-field pattern peak of the AUT, 

GProbe is the gain of the near-field probe which is assumed 

known a priori, and the bypass measurement is a way of 

calibrating out the effects of cable losses within the RF sub-

system where all of the values are in dB form.  The bypass 

measurement involves connecting the cable that went to the 

AUT with the cable that was connected to the probe and 

recording the signal in dB.  Any loss resulting from the 

addition of a connector would need to be extracted from this 

measurement as a network adjustment.  Note, again we have 

ignored mismatch connection here which would need to be 

compensated for if highly accurate gain measurements are 

required.  Historically, many transforms do not have the 

same transform normalisation and as such it is not normally 

possible to use (4) in this way unmodified. 

The approach used for the validation campaign was to 

simulate near-field measured data for a given antenna for 

each frequency, for fixed input power, etc. for each of the 

near-field acquisition geometries: plane-rectilinear, plane-

polar, cylindrical and spherical.  The various acquisition 

geometries will introduce artefacts that result from the 

difference within the truncation between the respective 



techniques.  However, these effects should be minimised 

when comparing between the respective far-field pattern 

boresight peaks, and as the electrical size of the AUT 

increases.  The comparison was also repeated over a band of 

frequencies to insure the generality of the result. 

III. SIMULATION 

Near-field measured data of a single offset reflector 

antenna was simulated from 3 to 15 GHz using a physical-

optics based algorithm.  The near-field data was produced on 

a plane, a cylinder and a sphere while keeping all parameters 

for the antenna fixed.  This was repeated across a band of 

frequencies.  Both electric (E) and magnetic (H) fields were 

produced so that the Kirchhoff-Huygens formula (which 

required both E- and H-fields) and the current elements 

formula (which required just H-fields) could be used.  All 

other transforms required just the E-fields.  To illustrate this, 

the 5 GHz near-field data was transformed to the far-field 

using the eight different transforms and can be seen plotted 

in Fig. 2 as an azimuth amplitude cut where no normalisation 

has been applied, and where the unimportant spherical phase 

factor and inverse distance terms have been divided out of 

the far-fields.  Here, and in all other plots in this paper, the 

following acronyms have been used: KH is Kirchhoff-

Huygens formula, CE is Current Elements formula, EC is the 

Equivalent Currents method, SNIFTd denotes Ticra’s 

proprietary spherical near-field to far-field program, Sph is a 

proprietary spherical mode expansion transform Cyl is a 

proprietary cylindrical transform, PP is a proprietary plane-

polar transform and lastly, PR is a proprietary plane-

rectilinear transform.  All of these modal transforms assumed 

the use of an electric infinitesimal Hertzian dipole for the 

input (near-field sampling) probe. 

  
Fig. 1. Copolar far-field azimuth 

amplitude pattern. 

Fig. 2. Copolar far-

field azimuth phase pattern. 

  
Fig. 3. Copolar far-

field elevation amplitude 

pattern. 

Fig. 4. Copolar far-

field elevation phase pattern. 

Although not shown due to the pressures of space, 

additionally each of the planar, cylindrical and spherical 

transforms were run using the far-field pattern of an x- and y-

axis orientated Hertzian dipole probe, and almost identical 

far-field pattern normalisation were obtained, i.e. the 

differences were far smaller than the next smallest term in 

the typical facility uncertainty budget.  Fig. 3 presents a far-

field azimuth phase plot where again no normalisation has 

been applied.  As is evident from these figures, and the 

equivalent elevation cuts presented in Fig. 4 and 5 show that 

all eight transforms are in very encouraging agreement in 

amplitude and phase over the far-field valid region as 

determined by the amount of truncation incurred in the near-

field.  Some differences will result from the interpolation that 

is needed to present all of these patterns tabulated in the 

same coordinate system, however these should be small. 

When comparing these far-field cuts it is important to 

take into account the differences that measurement 

truncation has on each of these far-field patterns.  .  For the 

planar (and cylindrical) cases the valid angle [1, 4] is circa 

60° for these simulated measurements.  Thus, we can expect 

to see differences in the far-field pattern for these simulated 

measurements.  As the frequency increases, the directivity of 

the offset reflector antenna increases and so the finitely large 

acquisition intervals sample a larger proportion of the 

radiated field and as such the truncation suffered will 

decrease.  Note, this can be seen more easily below where 

we examine the respective pattern peaks.  Here, the spherical 

cases (red and magenta traces) are truncation free.  The 

cylindrical azimuth cut (cyan trace) is free from the first 

order truncation effect, but will suffer first order truncation 

in the elevation plane.  The plane rectilinear (black trace) and 

plane-polar (blue trace) cases will exhibit truncation in both 

the azimuth and elevation cuts but as the plane rectilinear 

far-field data is derived from a square acquisition and the 

plane-polar data is derived from a circular disk, some 

differences will be seen, although these will be small.  For 

example, the RMS dB difference level between the 

respective spherical mode expansion based transforms was 

better than -87 dB, which is far below any other term within 

the facility level uncertainty budget.  The KH (dark green 

trace), CE (purple trace) and EC (light green trace) far-field 

data were derived from plane-rectilinear near-field data so 

each will contain truncation artefacts however the way in 

which this is manifest will be different from case to case as 

the underlying assumptions and boundary conditions are 

different in each formulation. 

By way of a further comparison, Fig. 6 to 21 present the 

Ludwig 3 [1, 4], copolar and cross-polar far-field, 5 GHz, 

amplitude patterns, plotted over the forward half-space in the 

form of a false-colour checkerboard plot that for consistency 

have been normalised by the same factor so that the 

elemental peak of the copolar SNIFTd pattern was exactly 0 

dB. From inspection of these patterns, both copolar and 

cross-polar, we can see that they are all in very encouraging 

agreement.  We do see differences in the wide-out side-lobe 

regions, e.g. beyond approximately 60°, where truncation 

effects and the differences in the respective assumed 

boundary conditions impact the patterns.  For example, the 

plane-wave spectrum based representations under-report the 
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wide out pattern levels where as the EC method over-reports 

the fields. 

  
Fig. 5. Kirchhoff-

Huygens transform copolar 

Fig. 6. Kirchhoff-

Huygens transform cross-pol 

  
Fig. 7. Current 

elements transform copolar 

Fig. 8. Current 

elements transform cross-pol 

  
Fig. 9. Equivalent 

currents transform copolar 

Fig. 10. Equivalent 

currents transform cross-pol 

  
Fig. 11. SNIFTd 

transform copolar 

Fig. 12. SNIFTd 

transform cross-pol 

  
Fig. 13. Spherical 

transform copolar 

Fig. 14. Spherical 

transform cross-pol 

  
Fig. 15. Cylindrical 
transform copolar 

Fig. 16. Cylindrical 
transform cross-pol 

  
Fig. 17. Plane-polar 
transform copolar 

Fig. 18. Plane-polar 
transform cross-pol 

  
Fig. 19. Plane-
rectilinear transform copolar 

Fig. 20. Plane-
rectilinear transform cross-pol 

Neither is correct, with these artefacts arising from their 

formulation.  However, it is important to recognised these 

phenomena, and be sensitive to their impacts, e.g. on the 

calculation of directivity by way of pattern integration. 

By way of a further comparison, Fig. 22 presents a 

comparison of the far-field peak amplitude plotted as a 

function of frequency which has been evaluated from 3 GHz 

to 15 GHz.  The same nomenclature and key has been used 

here as was employed in Fig. 2 – 5 above. 

 
Fig. 21. Plot of copolar pattern peak as a function of 
frequency for several different near-field to far-field transform 

algorithms. 

Clearly, all of the far-field elemental peaks are in very 

good agreement.  However, above 8 GHz the effects of 

truncation are greatly reduced, and the differences between 

the respective far-field pattern peaks reduce to circa 0.02 dB 

at two standard deviations.  At these frequencies, the 

uncertainty on a typical gain standard may be as much as 

±0.5 dB which is significantly larger than the differences 

observed here and which, as was noted above, an artefact of 

truncation.  Table I presents a comparison of the peak 

amplitudes and phase values for each of these transforms for 

the 5 GHz case. 



TABLE I.  COMPARISON OF TRANSFORM GAIN AND ELECTRICAL 

LENGTH AT 5 GHZ ON BORESIGHT 

Transform Type Amplitude [dB] Phase [deg] 

Kirchhoff-Huygens 54.20 147.9 

Current Elements 54.20 147.9 

Equivalent Currents 54.20 147.9 

SNIFTd 54.20 147.9 

Spherical 54.20 147.9 

Cylindrical 54.19 147.9 

Plane-polar 54.25 148.1 

Plane-polar (larger disk) 54.20 148.1 

Plane-rectilinear 54.20 147.9 

Plane-rectilinear (disk) 54.21 148.0 

TABLE II.  COMPARISON OF TRANSFORM DIRECTIVITY AT 5 GHZ 

Transform Type 
Directivity [dBi] 

Forward half-space 

SNIFTd 25.16 

Spherical 25.16 

Cylindrical 25.16 

Kirchhoff-Huygens 25.18 

Current Elements 25.18 

Equivalent Currents 25.16 

Plane-rectilinear 25.17 

Plane-rectilinear (truncated to NF disk) 25.19 

Plane-polar 25.20 

Plane-polar (larger NF disk diameter) 25.16 

From inspection of Table I we can see that the amplitude 

and phase values are in very good agreement.  The plane-

polar transform is in the poorest agreement, however by 

increasing the diameter of the near-field acquisition the far-

field comes into agreement with the other transforms.  

Interestingly, by truncating the planar-rectilinear near-field to 

a disk of the same size as the plane-polar simulated 

measurement moves that peak into closer agreement with the 

plane-polar case.  It is worth noting that the plane-polar 

transform and a DFT based transform were in agreement at 

circa -150 dB so this difference is not believed to be a fault 

of the transform per se, but rather a difference in the way 

truncation impacts the transformed far-fields [4, 9].  Thus we 

see, that truncation, the first and second order effects [1, 4] 

are the primary cause for far-field differences.  As a final 

comparison, Table II contains a comparison of the 

directivities obtained from a far-field pattern integration that 

was performed on the far-fields where, for the purpose of 

consistency, the patterns were limited to the forward half-

space only. 

From inspection of Table II we see that all of the reported 

directivities were in agreement to within 0.04 dBi at 5 GHz.  

The agreement improved at higher frequencies as the 

electrical size of the antenna increased, and the proportion of 

the radiated field that passes through the near-field sampling 

interval increased so that truncation effects decreased. 

IV. SUMMARY AND CONCLUSIONS 

This paper has presented the results of a recent study that 

obtained consistent transform gain and electrical length for 

eight different field transformation formulas.  Initially, most 

of the transform gains and electrical lengths varied between 

transforms due to differences within the respective 

derivations and implementations.  However, it was found 

that these could be equalised, with changes mainly being 

related to the translation of origins formula as required by the 

probe compensation formula, and aligned with Eqn (1) and 

Ref. [7].  Here, the spherical, cylindrical and planar 

algorithms were intended for use with industrial multi-axis 

robotic antenna measurement systems and provision of 

consistent far-field data, irrespective of the acquisition 

geometry, near-field probe, and transform algorithm used is 

desirable and permits both gain substitution and direct cable 

connection techniques to be used irrespective of whether the 

SGH and AUT were acquired using the same or different 

geometries with the associated uncertainty arising primarily 

from the degree of truncation suffered during the 

measurement, with the difference in the transform gains 

being negligible for all practical purposes. 
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