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Abstract— Compressive Sensing (CS) has been deployed in 
a variety of fields including wideband spectrum sensing, active 

user detection and antenna arrays. In massive MIMO arrays, 
CS has been applied to reduce the number of measurements 
required to verify the arrays excitation in a production 

environment. All follow the general approach of creating the 
sparsity needed for CS by subtracting the measured far-field 
or near-field of the test array from that of a 'gold standard' 

array measured under identical conditions. In a previous 
paper [1] the authors have applied CS to planar near-field 
(PNF) measurements offering a compact test facility well suited 

to the production environment for these antennas. In that 
paper the reconstruction of array excitation with a mean 
square error (MSE) of -30dB was achieved for a 20 x 28 

element array antenna at half wavelength spacing using just 
1.5% (177 samples) of the samples needed for a conventional 
NF measurement (12,100 samples) employing classical back 

projection to the aperture. Critical to the performance is the 
realization that the CS samples need to be confined to the 
central region of the NF measurement plane which for a 

conventional NF to FF planar antenna pattern measurement 
would offer a massive truncation error. In this paper we 
address the optimal sampling strategy needed for this NF 

approach to diagnose arrays with up to a 4% failure rate by 
employing a statistical performance analysis of the 
reconstruction accuracy. Previous publications concerning CS 

based array diagnostics have exclusively studied the 
reconstructed array element amplitude, in this work we 
consider both array element amplitude and phase 

reconstruction performance that is critical in applying the 
technique to a production environment. 

Index: Compressive sensing, Planar near-field 

measurements, Array antenna diagnostics. 

I.  INTRODUCTION 

The 5th generation new radio (5GNR) promises circa ten-

to-twenty-fold increase in data rate, and this has necessitated 

the adoption of several important new technologies. Chief 

amongst these is the move to higher frequency bands, and 

the adoption of far more complex Massive MIMO (Multiple 

Input Multiple Output) array antenna architectures and 

electronic beam scanning, which are needed to handle the 

associated increase in free-space RF path-loss. Although the 

frequency band below 6 GHz may be used during the initial 

rollout, 5G technologies will mainly occupy the 28 GHz, 

FR2, frequency band, or possibly higher, necessitating the 

widespread use of more complex, electrically larger, massive 

MIMO antennas [2, 3]. With the adoption of these more 

complex phased array antennas (typically comprising many 

hundreds of elements), comes the need to test and calibrate 

them as part of the production process. A classical approach 

would be to measure the field close to each array aperture, or 

the use of Near-Field/Far-Field (NF/FF) measurements to 

verify the FF beam or back project into the aperture to verify 

element excitations [4]. For volume production of massive 

MIMO arrays such studies need to be undertaken at the 

development stage leading to the creation of a reference or 

‘gold’ standard antenna which then needs to be replicated in 

volume. Thus, we need to consider alternative (fast) methods 

to drastically reduce the number of measurements and the 

time needed to determine an array’s excitation by making 

use of the known excitations of the ‘gold’ antenna. 

Compressive Sensing (CS) has been deployed in a range 

of disciplines and works on the principle that we can 

reconstruct a big space (P), from just a few samples (M) 

providing we can find an appropriate transform that enables 

the big space to be defined by only a few variables within 

this necessarily sparse domain. For the case of antennas, an 

array of sources can be used to define the fields on a PNF 

surface using the plane wave spectrum or the equivalent 

sources method. When using the equivalent sources method 

[7], the inverse transform from the NF to aperture is the 

‘compressed sensing’ protocol with the key to compressive 

sensing being recovering the full measurement from the 

compressed ones by utilizing the sparsity property [5] from a 

few NF measurements. A review of CS techniques for 

antenna applications can be found in [6]. 

In an earlier paper by the authors [1] the basic concept of 

this CS based PNF array diagnostics using the equivalent 

currents method is described in detail. To summarise we 

exploit the fact that the ‘gold’ reference antenna exists and 

explore the use of CS to undertake a back transform to the 

array aperture from the PNF measurement of the difference 

between the NF pattern of the AUT, and the ‘gold’ antenna 

using minimal, randomly located, radiated NF samples. 

Here, the aim is to minimise the number of measurement 

points, M, required to reliably and accurately measure the 

antenna in the NF, whilst accurately reconstructing the array 

element excitations. This approach is summarised in Fig. 1, 

where the back projected array excitations indicate just the 

difference between the excitations of the “defective” 

production antenna, and the ‘gold’ reference antenna. 



 

Figure 1.  Top: Flow diagram of defective element 

detection using compressive sensing. Bottom: the 

‘sparse’ difference antenna concept. 

II. THE CONCEPT OF COMPRESSIVE SENSING 

In this section we provide an introduction to sparce 

sampling and compressive sensing. CS is a way of sampling 

signals with the prior knowledge that the signals are sparse in 

some domain. This can be expressed as a linear algebra 

statement: 

• We have fewer equations than unknowns, so there are an 

infinite number of solutions. 

• We can find a solution to an underdetermined linear 

system of equations on the condition that the solution is 

sparse, i.e. most elements are zero. 

• The method requires incoherent measurements, i.e. 

randomness. 

The number of measurements required is dependent on the 

sparsity of the solution. Only in the last 15 years that 

advances in applied mathematics and statistics have allowed 

us to solve this efficiently and robustly for the sparsest [s]. 

The process can be summarized in Fig. 2. 

 
Figure 2.  Illustration of the concept of Compressive 

Sensing. 

To illustrate the CS problem we consider Fig. 3, the 

object is to find s, where s is sparse, from a small number of 

measurements y. Once we have s we can compute x. We find 

s by optimizing:  

1 2
min  such that s y C sψ σ− <

          (1) 

Where C needs to be incoherent with respect to ψ, i.e. as 

far away from C = ψ--1 as is possible.  The term σ2 is 

determined by the noise level affecting the measured 

samples. 

 
Figure 3.  An illustration of CS problem in matrix form, 

colours denote non-zero complex values and white 

denotes zeros. 

In our case the y in Fig. 3 represents sample NF 

measurements, C is the measurement matrix which defines 

the NF sample point locations, and ψ  represents the 

transform from element current to NF point.  

In (1) we use the l1 norm to minimise s, in mathematics, a 

norm is in some sense a measure of distance [5].  The norm 

of a vector is its length: 

• The l0 norm is the number of non-zero elements in the 

vector, this is a measure of the sparsity. 

• The l1 norm is the sum of the absolute value of the entries 

in the vector (Manhattan distance).  

• The l2 norm is the square root of the sum of the square of 

the entries in the vector (Euclidean distance). 

Here, the value is that the l1 norm provides the greatest 

number of zero valued entries, that is to say it produces the 

sparsest vector [s], which is what we are looking for. 

A full description of the implementation based on the 

current elements method, and the cvx based compressive 

sensing formulation can be found in [1]. 

III. MEASUREMENT SIMULATIONS 

We first consider a conventional PNF scan of a 20 x 28 

element dipole array with half wavelength spacing and 

operating at 8.2GHz. The scan plane is 2m by 2m with the 

NF probe distance of 3 λ from the aperture and a 

measurement noise level set at -60dB from the peak signal 

level, with NF measurement points separated by half 

wavelengths (λ/2) in x and y which results in 12,100 sample 

points in all. We now add four randomly located faults to this 

ideal array of the form -6dB and 45°; -10dB and -75°; -30dB 

and 135°; -3dB and 110° and simulate the defective NF.   

 
Figure 4.  Back transformed array excitations for 

defective array. Defective elements indicated by white 

diamond. Left: amplitude, Right: phase. 



We can then compute a conventional back transform [7] 

to the array aperture and obtain the amplitude and phase 

excitation of the defective array as shown in Fig. 4. 

Considering the element excitation as a complex number, 

the RMS element excitation error over the whole array was 

15.5 dB with maximum error of -8.4 dB, this taking account 

of both amplitude and phase errors as a single performance 

parameter. The false alarm level (RMS error amplitude 

calculated over the elements that were not faulty) was -25.7 

dB with a maximum of -11.9 dB. From these performance 

parameters we see that the phase errors are quite well 

defined, but the amplitude errors are less so, all with a 

considerable ‘background noise’ to the excitations meaning 

small amplitude and phase variations across the AUT array 

are undetectable. 

We now turn our attention to using the CS diagnostic 

process described above which in this case takes the 

difference between the near-fields of the reference and 

defective antennas to create the required sparsity.  The 

resulting reconstructed excitations of the defective array are 

shown in Figure 5. In this case the RMS element complex 

excitation error over the whole array was -31.7 dB with 

maximum error of -9.4 dB and the RMS false alarm level 

was -39.9 dB with a maximum of -19.2 dB. This 

performance is considerably better than that which would be 

obtained using conventional back projection results with 

very evident lower background noise (low false alarm level). 

Crucially this was achieved with just 177 NF samples, which 

is just 1.5% of the conventional back projection case of 

12,100 samples Nyquist spaced (λ/2) apart.  This level of 

performance has been achieved by making many 

modifications to the very basic application of CS, which 

would simply be: randomly choosing a number of sample 

points, M, from the 12,100 conventional NF sample plane 

and applying the CS algorithm just once. In the remainder of 

this section, we will describe these modifications and the 

level of performance achievable. 

 
Figure 5.  CS based reconstruction of array amplitude 

excitations for defective array. Defective elements 

indicated by white diamond. Left: amplitude, right: 

phase. 

Modification 1: choice of NF region:- The most crucial 

modification is the realization that the CS samples need to be 

confined to the central high intensity field region of the NF 

measurement plane, which is effectively the projection of the 

array aperture, as shown by the white rectangle in the NF 

phase plot of Fig. 6. For a conventional NF back projection 

process such a data truncation would offer massive 

truncation error. In both cases, these measurement 

simulations were taken with each NF point being subject to -

60dB of background noise. 

 
Figure 6.  Left: NF phase of defective array showing 

sample space as white rectangle. Right: NF samples 

taken in optimal central NF region only, 36 random 

points repeated six times. 
 

Modification 2: smart sampling:- Taking M purely 

randomly located samples within the sample region of Fig. 6 

results in clusters of points and relatively large empty spaces 

between samples leading to a mediocre reconstruction 

performance. However, a completely periodic sampling of 

the sample region would lead to gross aliasing and should 

always be avoided when using CS techniques.  Here we 

employ a Poisson like sampling approach for the M samples. 

In Fig. 6 each set of M=36 samples are pseudo-randomly 

selected within the sample space, and this is achieved by 

dividing the sample space into 36 equal size rectangles and 

then randomly selecting one sample point within each 

rectangle. 

Modification 3: Run CS process several times with 

different sample sets:-  For the case shown in Fig. 6 we take 

multiple sets of 36 samples, run the CS algorithm each time 

and then take the complex average of the recovered array 

element excitations. As demonstrated in [1] we have found 

that taking six sets of 36 samples offers a good compromise 

between performance and number of samples required. This 

process means that some samples points are used more than 

once (see Fig. 6) and this results in the total number of 

unique samples being taken as 183 in the case of Figure 6 

rather than 36 × 6 = 216. In a real-life measurement, these 

six sets of 36 samples can be determined a priori and so the 

desired unique measurement points can then be measured 

using a robotic arm mounted NF probe. 

With these modifications in place, we need to determine 

the level of reconstruction performance, so we take a far 

broader statistical view by running a random selection of 

fault locations many times, and plot the cumulative 

distribution function (CDF) [1] of the mean square error 

(MSE).  Fig. 7 shows the CDF MSE over 50 runs in the 

presence of -60 dB noise for the array of Fig. 5. If we take 

the 80% CDF MSE level as a useful reference point to 

compare results (i.e. 80% of the runs will be better than or 

equal to this MSE value), then this result shows a MSE of -

33.1 dB. We have taken the 80% CDF point rather than the 

one-sigma (68%) point, or the two-sigma (95%) as arguably 

it provides a fairer representation of system performance. 

Also shown on this figure is the CDF MSE of just the faulty 



elements, which for this case is -12.8 dB at the 80% point. 

The CDF of the maximum value of the excitation error for 

each run is also shown in Figure 7 and at the 80% CDF point 

is -10 dB. 

 
Figure 7.  CDF of amplitude excitation error with 

statistics taken over 50 random sets of 4 fault locations. 

Faults fixed as shown in the inset table. 
 

We should point out that, unlike some publications, the 

faults we simulate are faults of both amplitude and phase 

(see inset to Fig. 7), and we are measuring the quality of the 

reconstruction of both array element amplitude and phase 

excitation. Our aim is not to just detect whether an element is 

on or off, but rather to reconstruct the array excitations as 

accurately as possible with the smallest number of samples. 

Clearly, reconstruction performance deteriorates as the 

number of faults increases, but this can be partly 

compensated by increasing the number of samples, M. 

 
Figure 8.  80% CDF MSE of reconstructed array 

amplitude vs the number of faulty elements for different 

number of samples per set, with six sets used to 

determine the reconstruction. The average number of 

samples needed for each M case is shown on the right 

hand scale. 

To aid in the choice of M we have repeated the process 

that produced the results of Fig. 7 using different numbers of 

faulty elements K, and samples M and have plotted the 80% 

CDF MSE value of the array excitation amplitude in Fig. 8. 

 

In all cases each of the 50 statistical runs took six sets of 

M samples as previously described. The number of samples 

on the right-hand side of Fig 8 is then the average number of 

samples needed for each of the 50 runs. 

From Fig. 8 it is evident that prior knowledge of the 

number of faults to expect from the AUT is crucial in 

determining the number of samples needed.  If the array has 

an expected failure rate of 1% (6 faults in this case) then we 

need to take around 183 samples (1.5% of Nyquist needed 

for classical back projection). However, if we are expecting a 

failure rate of 4% (22 faults) then we need to take a larger 

number of around 380 samples (3.1% of Nyquist). To 

illustrate a possible practical scenario, we take our 20x28 

array and apply a full failure of one complete column (20 

faults) and in addition add two other elements with just a 90° 

phase faults giving a total of 22 faults. We run the CS 

procedure with M=100 per run, with six runs requiring 

typically 380 samples (from Fig. 8), which is 3.1% of 

Nyquist. Fig. 9 shows both the true faulty array and the 

resulting reconstruction. Both the faulty column and the two 

outlying phase faults are clearly evident in the 

reconstruction. The accuracy of the amplitude reconstruction 

of the faulty column is poor, but clearly indicates that the 

array has a faulty column. The accuracy to which the two 

outlying 90° phase errors are recovered is excellent however, 

with reconstructions of 105° and 107°. Also evident for these 

two phase errors is the bleed-thro seen on the reconstructed 

amplitude (+1.6 and +2.7) dB of those two elements as well 

as some fractional amplitude errors surrounding these fault 

locations. With these faults corrected we then check this 

array with a second CS scan this time using M=36 (189 

samples) as we expect few faults. The resulting reconstructed 

array is indistinguishable from the reference array with an 

amplitude MSE level -62dB with a maximum error of -46dB 

and phase MSE level of 0.04° with a maximum of 0.3°. 

   
Figure 9.  Left column: true array excitation with a 

full column fault (elements set to -40dB) plus two faults 

of phase at +90°; Right column: reconstructed array 

excitation. Top amplitude, bottom phase. 



Fig. 8 also shows an estimation of the number of samples 

needed for a given array size n and number of faults K using 

the formula K1*ln(n/K) where K1 is a constant of around 5-6. 

This formula is often used in the wider compressive sensing 

field [5] and is clearly a good estimation for this work. 

We have found that to get the best performance from this 

CS array diagnostics the reference and AUT arrays are best 

tested with a uniform amplitude excitation to maintain the 

best signal to noise (S/N) of the resulting difference complex 

field pattern that represents the sparse array that CS is 

applied to. An array with a tapered amplitude distribution 

just creates a poorer S/N at the edges of the array. As we are 

taking the difference NF pattern between reference and AUT 

the phase used is immaterial, in the above results we have 

used a flat phase, but we have tested both a scanned beam 

phase distribution and a random phase distribution and 

equally good results are obtained. 

Finally, it is important to realise what these low 

percentage level of element faults cause to the far-field (FF) 

pattern. In Fig.10 we plot the azimuthal FF patterns for the 

20x28 array for the case with 8 faults and 22 faults (1.4% 

and 4% failure rate respectively) along with the equivalent 

multipath level (EMPL). Looking at these FF patterns it 

would be difficult to determine that the array has any fault at 

all using purely FF measurements. It is also worth noting that 

the directivity loss for 8 faults is just 0.12dB, and for 22 

faults is still only 0.34dB. 

 
Figure 10.  FF azimuth radiation pattern difference 

between reference and defective array with; top: 8 

faulty elements; bottom: 22 faulty elements. 
 

IV. SUMMARY, CONCLUSIONS AND FUTURE WORK 

This works builds on our earlier publications [1, 6] in the 

use of conventional convex optimisation-based CS in array 

diagnostics. Many of the techniques developed for PNF array 

diagnostics were developed for use in far-field (FF)-

multiprobe anechoic chamber (MPAC) testing [6]. However, 

PNF is much better suited to a production test environment 

where the predetermined NF sample locations (based on 

simulated measurements and expected element failure rate) 

can be easily, rapidly, and flexibly taken using an industrial 

robotic arm in a compact space. 

Our results, summarised in Fig. 8, have shown the level 

of reconstruction possible for a given set of sparse samples 

and the number of faulty array elements. We have 

demonstrated that both amplitude and phase excitation of the 

array can be well reconstructed. We have covered a wide 

range of sample to element ratio (M/n) of up to about 0.6. 

Depending on the level of reconstruction accuracy we have 

found that arrays with up to 4% element failure rate are 

suitable for this CS based diagnostics. This level of failure is 

compatible with what could be expected to be encountered in 

a typical massive MIMO arrays production facility. In [8] the 

Bayesian Compressive Sensing (BCS) framework was 

applied to this ‘gold’ array comparison approach. The work 

demonstrated that diagnostic errors of order -30dB are 

achievable with NF measurement to element ratio (M/n) of 

>0.6. BCS is however more complicated to use, requiring 

several control parameters to be predetermined before use. In 

our future work we aim to be comparing and contrasting 

these two methods for production testing applications. 
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