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Abstract—In this paper we introduce a novel technique for the 

efficient production test and measurement of 5G, Massive MIMO 

array antennas for the purpose of verification, diagnostics, and 

fault detection that drastically reduces the number of 

measurements required and the associated acquisition time 

needed. The technique utilises compressive sensing and sparse 

sampling combined with a total variation measurement approach 

that enforces the requisite sparsity on the problem. In this paper, 

we compare this new spherical near-field total-variation based 

acquisition approach with the authors existing, analogous, planar 

technique. Extensive performance comparisons are presented 

which aggregate results across many test cases which is a 

necessity, and a consequence of the statistical nature of the 

compressive sensing technique that is imposed by virtue of the 

requirements of the Restricted Isometry Property (RIP). 

Crucially, this paper identifies and addresses a fundamental flaw 

within the application of many total-variation based methods and 

especially when used with the difference field between a reference 

antenna and a production test antenna. This extends the use of a 

novel analysis process that incorporates an l0 based minimisation 

strategy to overcome this problem thereby restoring the CS 

process to very nearly the levels of performance attained in our 

prior work. 

I. INTRODUCTION 

Compressive Sensing (CS) and Sparse Sampling based 
techniques [1, 2, 3, 4] have been deployed in a variety of free-
field metrology-based applications including radar imaging [5], 
cylindrical [6] and spherical near-field measurements [7, 8], 
far-field reflection suppression [9], and for array antenna 
measurement and diagnostics [10, 11, 12, 13]. For the case of 
Massive MIMO antenna measurements, CS has been 
successfully used to reduce the number of measurements 
needed to verify the antenna array’s excitation in a production 
test environment [14, 15, 16, 17] assuming failure rates of 
typically less than 5%. These have largely followed the general 
approach of creating the sparsity needed by CS through an 
application of the total variation method which involves 
subtracting the measured far-field, or near-field, of the assumed 
defective production test array antenna from that of a known 
reference “gold-standard” antenna when acquired under 
identical conditions [10, 11, 12, 13]. 

In prior papers by the authors [16, 17], the basic concept of 
the CS based planar near-field (PNF) array diagnostics using 
the equivalent currents (EC) method can be found described in 
detail. To summarise the method, we first exploit the fact that 
the ‘gold’ reference antenna exists and explore the use of CS to 
undertake a back propagation to the antenna’s aperture from 

the PNF measurement of the difference between the NF pattern 
of the AUT, and the ‘gold’ antenna using minimal, randomly 
located, NF measurements. Here, the intention is to minimise 
the number of measurement points, M, required to accurately 
and reliably measure the antenna in the PNF, whilst accurately 
reconstructing the array antenna’s radiating element 
excitations. However, in this paper, and in contrast to prior 
works in this area of application, here, the NF is assumed to 
have been acquired using a spherical acquisition geometry. 

The structure of this paper is as follows. Section II presents 
an overview of the EC method which here is extended to admit 
the generalised spherical geometry and its associated 
polarisation. Section III provides an introduction to the CS 
technique which is more complex than that which has been 
treated previously as it accommodates each of the individually 
measured polarisations simultaneously. Section IV presents a 
verification of the SNF EC based aperture diagnostics 
formulation which underpins the new total-variation CS 
technique, before Section V presents a comparison of the 
planar and spherical CS implementations. Section VI presents 
an examination of the effect of electrical path length difference 
between probe and gold standard antenna and that of probe to 
test antenna which can pose a fundamental limitation in the 
creation of the total-variation difference pattern. Lastly, Section 
VII contains a summary and the conclusions. 

II. OVERVIEW OF THE SNF EC METHOD 

A detailed treatment of the EC method for planar 

acquisition geometries can be found in the open literature [15, 

16, 17] thus, for the sake of brevity, we shall herein only 

consider the extension to the related spherical case. As is 

widely known, the equivalent magnetic current approach 

utilises a Green’s function based formulation to obtain an 

equivalent magnetic current sheet over a convenient surface 

that encloses the AUT from the electromagnetic (EM) field 

acquired across a two-dimensional surface in front of the 

radiator. Once the equivalent currents (EC) have been 

determined, they can be used to propagate the electric fields 

elsewhere in space, including out to the far-field [15]. In this 

procedure, an electric field integral equation (IE) is 

constructed which relates the measured near electric fields to a 

set of equivalent magnetic currents which can be solved using 

an efficient, but resource intensive, method of moments 

(MoM) procedure [15, 18]. This typically involves a point 



matching technique which converts the IE into an equivalent 

linear algebra, i.e. matrix, form allowing it to be solved in one 

of several ways, e.g. by determining the Moore-Penrose 

pseudoinverse, or from the least squares conjugate gradient 

(LSQR) method [15, 18], the latter being as popular choice. 

Let us assume that the radiator is placed in the back half-

space and is radiating forward into the positive half-space, 

with the two regions bounded by an infinitely large xy-plane. 

If we introduce an infinite perfect electric conducting (PEC) 

sheet on one side of the surface, then in this case only the 

tangential components of the electric fields need be specified 

over that surface. Thus, for an antenna with a well-defined 

aperture, by using the image theorem, the magnetic currents 

can be expressed to a good approximation as [15, 18, 19], 
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The electric vector potential F may be defined in terms of 

the integral of this equivalent current sheet as [15, 18, 19], 
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Here, primed variables are used to represent the source 

point, whilst un-primed variables are associated with the field 

point. The free-space propagation constant is denoted by k0, 

and the displacement R can be expressed as, 
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Since we can obtain the electric fields from the electric 

vector potential F using [3, 15, 18], 

 ( ) ( )( )
1

E r F r
ε

′ ′= − ∇ ×  (4) 

Then by exchanging the order of integration and 

differentiation we may write that, 
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Here, Jm denotes the surface magnetic current sheet that we 

seek, G(r,r′) is the Greens function, and E(r) is the electric 

field that is measured across the SNF measurement surface S, 

which is located at a radius that is more than a few 

wavelengths from the AUT to insure it is outside of the 

reactive NF [15]. If we assume a spherical coordinate system 

and polarisation basis, then we may write this in a more 

convenient linear algebra form as [15, 18, 19], 
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Here we employ the field equivalence principle [15] to 

represent the field at an arbitrary point in space as an integral 

over the surface on which the fields are known where the free-

space Green’s function can be expressed as, 
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Here, the partial derivatives of G are, 
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Since the cartesian and spherical fields can be related [15], 
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Combining this into a single block-Toeplitz form yield, 
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Recognising that the EC method only requires the 
measurement of the tangential field components on the SNF 
surface allows us to rewrite (12) as: 
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Where, 
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This integral equation can be solved using a method of 

moments (MoM) approach [15, 18, 19] which involves us 

utilising the sampling theorem to replace the continuous 

current sheet with an array of fictitious magnetic dipoles, and 

the electric fields with a set of discrete samples. This is 

equivalent to using a Dirac delta function for the expansion of 

the current sources, and enables us to replace the integration 

with a summation with the resulting system of equations, 

 [ ] [ ][ ]m
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This is block-Toeplitz in form, thus each of the Hn,m sub-
matrices have nmeasurements rows, by ncurrents columns resulting in 

the complex matrix [H] comprising 3×nmeasurements rows by 

2×ncurrents columns in all, which will rapidly become 
computationally and resource intensive. Similarly, the column 
vector [E] contains all the measured points for all of the 



individual polarisations and thus will have 2×nmeasurements rows 

and one column with [Jm] being a column vector with 3×ncurrents 
rows and a single column. Thus, the coefficients for the 
fictitious magnetic dipole array can be obtained by solving this 
system of linear equations [15, 18, 19]. Crucially, and as will 
be discussed in the next section, this system of equations is in a 
form that is amenable for tackling with CS. 

III. OVERVIEW OF COMPRESSIVE SENSING 

In this section we provide a brief introduction to sparse 
sampling and CS. CS is a way of sampling signals in the 
knowledge the signals are sparse in some given domain. 
Classically, when expressed in a linear algebra form, we would 
say that as we have fewer equations than unknowns, then there 
are an infinite number of solutions. However, we can still find 
a solution to an underdetermined linear system of equations on 
the condition that the solution is sparse, i.e. that most of the 
elements are zero. To do this however, the method requires 
incoherent measurements, i.e. randomness, where the number 
of measurements required depends on the sparsity of the final 
solution. It is only in the last fifteen years or so that advances in 
applied mathematics and statistics have allowed us to solve this 
efficiently and robustly for the sparsest [s]. This process can be 
seen summarized in Figure 1 below, where we wish to 
construct the full NF (x) from a small number of samples (y) 

via a transform domain (ψ ) with sparse coefficients (s). 

 
Figure 1.  Illustration of the CS concept. 

To illustrate the CS problem, we consider the task of 

finding s, where s is sparse, from a small number of incoherent 

measurements y that satisfy the restricted isometry property 

(RIP) [10]. Thus, we find s by optimizing, 
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Here, C needs to be incoherent with respect to ψ, i.e. as far 

away from C = ψ--1 as is possible and the term σ is determined 
by the noise level within the measurement. In our case y 
denotes sample NF measurements, C is the measurement 

matrix which defines the NF sample point locations, and ψ 
represents the transform from element current to NF point. As 
noted above, a comprehensive discussion of the CS principle is 
beyond the scope of this paper however, more information is 
available in the open literature, e.g. [10]. To efficiently solve 
(21), several software packages are available, e.g. CVX [20], 
YALL1 [21], and SPGL1 [22] which are all readily accessible. 
For this study, we have chosen to utilize the YALL1 algorithm 
due to its efficiency and accuracy [15]. 

IV. VERIFICATION OF SNF EC METHOD 

We first consider a conventional spherical near-field scan 
of a 20 x 28 element dipole array with half wavelength spacing 
and operating at 8.2GHz. Here we have included four randomly 
located faults to this array of the form -6dB and 45°; -10dB and 
-75°; -30dB and 135°; -3dB and 110° which can be seen 
presented in Figure 2 below. 

 
Figure 2.  Elemental element excitations of the 8.2 GHz planar array 

antenna, amplitude left, phase right. 

We then simulate a standard SNF acquisition of this 
defective planar array antenna shown in Figure 3 (a), (b) below. 

    
(a) (b) (c) (d) 

Figure 3.  Simulated SNF Eθ (a), Eφ (b) amplitudes, 

Sparse sampled Eθ (c), Eφ (d) locations and amplitudes. 

Here, the hemi-spherical measurement surface places the 

NF probe at a distance of 10λ at 8.2 GHz as measured from the 
centre of the aperture of the antenna, which is just 2% of the 
classical FF distance [15] and includes measurement noise 
level set at -60dB from the peak signal level. This measurement 
had 8280 points in all and complied with the standard spherical 
near-field sampling theorem [15]. Using the method developed 
above in Section III, we may then compute the equivalent 
magnetic current across the surface of the array’s aperture and 
see the amplitude and phase of the equivalent currents of the 
defective array as shown in Figure 4. 

    
Figure 4.  Reconstructed amplitude left, phase right. 

Here, from observation, we can see that the positions of the 
defective elements have been recovered correctly. As is often 
the case with such moment-method type reconstructions, some 
stray fields are evident outside of the antenna aperture. In 
general, it has been noted that the results are improved when 
the correct location of the radiating elements is used within the 
reconstruction of the equivalent surface currents. This can be 
taken to provide encouraging confirmation of the effectiveness 
of the underlying EC spherical measurement technique. In the 



next section results of an exhaustive comparison between the 
planar [16, 17] and new spherical CS approach can be seen. 

V. COMPARISON OF PNF & SNF CS RESULTS 

As CS is inherently a statistical process, we must run each 
of the respective CS algorithms a larger number of time and 
aggregate the results. For this example, we used 25 NF samples 
of an 8 x 24 element rectangular planar array 5G Massive 
MIMO base station antenna, with 4 amplitude and phase faults 

included each at -1dB, and ±22°. 

    
(a) (b) (c) (d) 

Figure 5.  Comparison of element amplitude (a) and (b) and phase (c) 
and (d) excitations, and CS reconstructed excitations (b) and (d) from 

PNF measurements. 

A typical reconstruction result is: amplitude and phase at 
(3, 7) =-1.3 dB, -23.8°, with a target =-1 dB, -22°, amplitude 
and phase at (13, 3) =-2.2 dB, 35.3°, with a target =-1 dB, 22°, 
amplitude and phase at (24, 5) =-0.6 dB, -28.6°, with a target =-
1 dB, -22°, and lastly, amplitude and phase at (2, 4) =-1.5 dB, 
20.8°, with a target =-1 dB, 22°. The result for one case can be 
seen presented in Figure 5, which shows comparisons of the 
elemental excitations and the reconstructed elemental 
amplitude and phase excitations where the location of the 
faulty elements are highlighted by the white diamonds. As in 
our previous work, we use a statistical measure of 
reconstruction performance based on plotting the cumulative 
distribution function (CDF) [14] of the RMS error of the 
reconstructed array amplitude excitation over 50 runs for 
different fault locations and look at the statistics of the 
reconstruction [16, 17]. This can be seen presented in Figure 6 
where Blue is rms reconstruction error over all array elements, 
Red is Maximum rms error over all array, Yellow is rms 
reconstruction error over faulty array elements. 

 
Figure 6.  CDF of CS reconstructed excitations for 50 runs of different 

sample points, amplitude left, phase right. 

Next, we can repeat this using the equivalent spherical 
implementation. Figure 3 (c) and (d) shows the SNF samples 
that were used in one run of the CS processing. Here, the 
coloured dots represent the location and amplitude of the 
samples. Again, a typical reconstruction is: excitation at 20,2, 

true: amp =-1dB, phase=-22°, recovered: amp =-0.7dB, 

phase=-14.4°, excitation at 10,4, true: amp = -1dB, phase= 22°, 

recovered: amp =-1.0 dB, phase= 20.5°, excitation at 8,8, true: 

amp = -1dB, degs= -22°, recovered: amp =-0.7dB, phase= -

19.3°, excitation at 13,3, true: amp = -1dB, phase= 22°, 

recovered: amp =-0.6dB, phase= 31.4°. As for the PNF case, 
the result for one SNF case can be seen in Figure 7, which 
present comparisons of the elemental excitations and the 
reconstructed elemental amplitude and phase excitations. As 
we did for the planar case above, we plotted the CDF of the 
RMS error of the reconstructed array amplitude excitation over 
50 runs for different locations for the faults. This can be seen 
presented in Figure 8 below which may be directly compared 
with the planar case of Figure 6 above. 

    
(a) (b) (c) (d) 

Figure 7.  Comparison of element amplitude (a) and (b) and phase (c) 

and (d) excitations, and CS reconstructed excitations (b) and (d) from 
SNF measurements. 

If we take the 80% CDF MSE level as a useful reference 
point to compare results of the 50 runs (i.e. 80% of the runs 
will be better than or equal to this MSE value) and look at the 
statistics of the reconstruction we see that for the planar case, 
all RMS amplitude error at CDF of 0.68 and 0.8 (dB) =-34.9, -
34.2 respectively, and for the equivalent spherical case, all 
RMS amplitude error at CDF of 0.68 and 0.8 (dB) =-34.1, -
33.4. 

 
Figure 8.  Comparison of amplitude element excitations, and CS 

reconstructed excitations, cf. Fig. 6. 

VI. ELECTRICAL PATHLENGTH ERROR & MITIGATION 

The use of CS in array diagnosis is predicated on measuring 
the NF difference between the gold antenna and the antenna 
under test (AUT). In practice this must entail the NF 
measurement of the gold antenna at the 25 sample points and 
then the placing of the AUT in exactly the same location to 
measure the same 25 NF samples. We thus need to understand 
the tolerance of the CS process to both transverse location 
errors (x,y) between the gold and AUT antennas as well as the 

longitudinal (z) ones. For a x = y = 0.01λ = 0.9mm transverse 



translation of the AUT with respect to the gold antenna, we 
found an acceptably small level of performance degradation. 

For a longitudinal (z) location error of 0.01λ the corresponding 
80% CDF all element rms reconstruction error drops from -
28.3 dB to a poor -21.1 dB. Clearly the tolerance to 
longitudinal alignment of the CS measurement system is much 
more critical than that of transverse alignment. This result is 
not surprising when we realise that any z translation between 
gold and AUT antennas is effectively a phase change across the 
AUT array, so every element has effectively a phase fault 
added to it, rendering the system non-sparse. Even if one could 
engineer a mechanical alignment system that could be accurate 

to within 0.17mm (0.002λ = 0.7°), such a phase change could 
be easily generated by RF subsystem thermal drift between the 
NF acquisition of gold and AUT. As far as the authors are 
aware this problem has not been highlighted before in the open 
literature. To overcome this z-tolerance issue, we have 
proposed and verified through simulation the following 
scheme: 

• Count cells of the reconstructed array with amplitude < ± 1 
dB of the known gold array excitation and assume there is 
no error on these cells. 

• Similarly, count cells of the reconstructed array phase < ± 
5° of the known gold array excitations and assume there is 
no error on these cells. 

• Plot these values as a scan through various values of z 
deflection are tried in the CS code over a range of z = ± 

0.05λ with a step size of 0.0025λ. 

• Pick the set that has the largest count (i.e. minimum 
number of faulty elements) to give an estimate of the true z 
error. 

 
Figure 9.  CDF rms amplitude reconstruction error for z-location error 

process (25 samples 4 randomly located faults) taken over 50 sets of 

different fault locations. Gold to AUT misaligned in z by 0.03λ 

Figure 9 shows the CDF rms amplitude reconstruction error 
for the above z-location error process when repeated 100 times 
with 25 fixed samples, and 4 randomly located faults. Shown 
on this figure are the CDF results for the following cases of 
reconstructing the array excitations using: the z-location error 
detected using the amplitude counts (blue); the z-location error 
detected using the phase counts (red); the true value of z-

location error (0.03λ in this case) (yellow); the case with no 
attempt at z-location error correction (magenta). Clearly, the 
recovery process works correctly with both amplitude and 
phase detected error corrections having identical results to the 
true z-error case. It is worth noting from Fig.10 that there is a 
10dB degradation in performance when no z-location error 
correction is employed. 

 VII. SUMMARY & CONCLUSIONS 

This paper has presented a novel, total-variation based, 
spherical CS technique for production array antenna 
diagnostics that can be used for the test of electrically large 
antennas. We have obtained very similar levels of performance 
for the existing planar and new spherical implementations. The 
performance analysis for the specific massive MIMO array 
considered here suggests that fault levels up to circa 2% can be 
identified confidently, with performance degrading as the 
number of faults increase and hence as the problem becomes 
progressively less sparce. Depending upon the level of 
reconstruction accuracy required, we have found that arrays 
with up to 4% element failure rate are suitable for this CS 
based diagnostics with this level of failure being greater than 
what could be expected to be encountered in a typical massive 
MIMO array production line. Lastly, in applying the total-
variation based CS technique for practical array diagnosis 
through measurement simulation and undertaking a tolerance 
study, we have identified the longitudinal alignment tolerance 
required between the gold reference antenna as being a crucial 
consideration for the successful deployment of the approach. 
We have proposed and verified through simulation a l0 based 
optimisation routine being successfully harnessed to recover a 
circa 10 dB improvement in the amplitude reconstruction error 
that returns much of the original systems performance. 
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