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Abstract— In massive MIMO arrays, Compressive Sensing (CS) 

has been proposed to rapidly verify the arrays excitation in a 

production environment. All follow the general approach of 

creating the sparsity needed for CS by subtracting the measured 

far-field or near-field of the test array from that of a 'gold 

standard' array measured under identical conditions. In several 

previous papers the authors have applied CS to planar near-field 

(PNF) measurements with a view to building a compact test facility 

well suited to the production environment for these antennas. In 

this paper we identify a fundamental flaw in the creation of the 

difference pattern between a gold standard antenna and the test 

antenna, in that the electrical path length difference between 

probe and gold standard antenna and that of probe to test antenna 

must be no more than 0.002 or 0.7°. Even if mechanical tolerance 

can achieve this, thermal drift in the RF subsystem will easily 

reach the 0.7° figure.  The paper then describes an analysis process 

that overcomes this problem restoring the CS process to very 

nearly the levels of performance described in our previous 

publications and those of other workers. To achieve this, we have 

used a fixed set of NF probes located randomly over a region 

confined to the central part of the NF measurement plane along 

with a PIN switch matrix to offer a very rapid and very consistent 

RF measurement. We have extensively simulated a massive 

MIMO array of 8x24 elements and found that just 25 NF probes 

can detect up to 2% failure rate. In addition, we present a 

technique to improve the accuracy of the array excitation 

reconstruction by using several partial excitations of the array.  In 

this work we consider both array element amplitude and phase 

reconstruction performance and demonstrates that it is possible to 

detect a single element, phase only, fault of just 22.5°.  

Index Terms— Compressive Sensing, Sparse Sampling, Massive 

MIMO, Antenna Measurements, Antenna Metrology, Array 

Antennas, Planar Near-Field Measurements, Planar Near-Field 

Array Diagnostics.1 

I. INTRODUCTION

HE enormous increase in data throughput required by

modern communication systems has necessitated the 

adoption of several new technologies.  Perhaps the most 

significant of these concerns the shift to higher frequency 

bands, and the use of array antenna architectures, specifically 

Massive MIMO (Multiple Input Multiple Output) antennas 

employing electronic beam shaping and scanning. Although the 

shift to the FR2 band is perhaps happening more slowly than 
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was first anticipated, the proliferation of more complex, 

electrically large, massive MIMO antennas [1, 2] with their 

complex phased array topologies, comprised of many 

thousands of individually controlled radiating elements, greatly 

complicates the test, calibration, and measurement aspects of 

the production process. Historically, the techniques that were 

developed for high value, low volume production, of 

electronically scanned arrays used in aerospace or space 

applications were time consuming and are generally considered 

to be inappropriate for applications requiring mass manufacture 

of many tens of thousands of units. These techniques generally 

include using a single low scattering probe to sample the 

electric field close to each array aperture, i.e. to park-and-probe, 

the array, or the use of microwave holographic metrology 

(MHM) [3], and aperture diagnostics to verify the element 

excitations [3, 4]. The cost, complexity and time required by 

these approaches are such that they are rendered inappropriate 

for use in modern volume production environments such as 

those that are commonplace in the manufacture of user 

equipment and/or Group Radio Access Networks.  This is the 

motivation for this work which seeks to find practical methods 

for the acceleration of production test and calibration of 

massive MIMO arrays. 

Modern CS considers the problem of reconstructing signals 

that have been sampled at sub-Nyquist rates with the condition 

that they be sparse or compressible in some domain with the 

grounds of this work being published in 2006 in [5, 6, 7]. 

Typically, this sort of problem is constructed as a linear inverse 

problem which classically would be tackled by determining the 

Moore-Penrose pseudoinverse. This is possible providing the 

number of equations outnumbers the number of unknows.  If 

this is not the case, then the system is underdetermined, the 

inverse problem is ill posed and has no unique solution. 

However, if we add the constraint that the signal, in some 

domain, has only a few non-zero elements, i.e. is sparse, then 

under this assumption, it is mathematically possible to 

reconstruct the sparse signal thereby solving the optimisation 

problem. Unfortunately, this problem is of combinatorial nature 

and is computationally intractable [8].  However, if the problem 

is relaxed to the convex l1-minimisation problem, then an 

efficient solution can be found.  A condition for the guaranteed 

recovery can be provided by satisfying the Restricted Isometry 

Property (RIP) [5, 6, 7] which introduces the requirement for 
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random sampling and adoption of parsimonious solution [9]. 

Compressive Sensing (CS) has been successfully deployed 

in a range of applications and is predicated on the principle that 

it is possible to reconstruct a large space (P), from merely a few 

samples (S) providing that we can find an appropriate transform 

that enables the large space to be defined by a few elements 

within this mostly empty, i.e. sparse, domain. For the case of 

antennas and antenna measurements, an array of elemental 

radiating sources can be employed to specify the far-field 

radiation pattern function. When using the Green’s function 

based equivalent sources method, the transform from the NF to 

antenna aperture can be harnessed to provide the ‘compressed 

sensing’ protocol. Here, the key to CS being the recovery of the 

complete measurement from the sparsely sampled randomly 

distributed measurements [10]. 

CS was first applied to the spherical near-field (SNF) case to 

reduce the number of NF measurements needed by exploiting 

the inherent sparsity property within the spherical mode 

coefficients when acquired within an appropriate frame of 

reference [11, 12, 13] and thereby decreasing measurement 

times with a reduction in the number of SNF measurement 

points.  CS techniques have also found utility in Inverse 

Synthetic Aperture Radar (ISAR) target imaging [14] where the 

approach was found to provide a very efficient way of 

evaluating measured target signatures located within SAR 

backgrounds enabling the identification of target signatures. CS 

based processing has found utility as a way of further enhancing 

mode-filtering based far-field scattering suppression techniques 

[9]. Here, the CS method was used to recover the antenna 

cylindrical mode coefficients (CMCs), which is tenable because 

of the coordinate translation of the measurement pattern to the 

rotation centre, resulting in the CMCs become quite sparse in 

the mode domain.  This extends the generality of the mode 

filtering method to include under-sampled data, and data 

acquired at positions which grossly deviate from the typically 

equally spaced abscissa. 

Returning to the question of array diagnostics and fault 

detection of planar array antennas, i.e. the most frequently 

encountered class, classically one would gravitate towards 

utilising a planar measurement approach and a plane-wave 

spectrum-based post-processing technique [3, 15].  However, 

the sort of sparsity afforded naturally by the spherical and 

cylindrical mode domains for an antenna centred expansion is 

not available in the plane-wave spectrum [9].  Instead, an 

alternative approach must be sought [16, 17]. Here, instead of 

relying on the sparsity provided by the coefficients of the 

specific modal expansion being utilised for the representation 

of the particular radiator, we instead reduce the number of 

measurement points required for NF to FF transformation by 

assuming that the number of failed elements within the array 

was far smaller than the total number of elements within the 

array. This was found to be a crucial step in providing the 

requisite sparsity property to enable compressive sensing to be 

successfully deployed. However, this technique requires the 

availability of a reference, i.e. a properly functioning ‘gold’ 

antenna and imposes upper bound limitations upon the stability 

of the measurement system, the repeatability and 

reproducibility of the measurements, as well as the sensitivity, 

i.e. the amount of measurement noise permissible. 

In this paper, we exploit the fact that in a production test 

setting a ‘gold’ reference antenna exists, and explore the use of 

CS to undertake a back transform to the array aperture from a 

planar measurement of the difference between the NF pattern of 

the AUT and the ‘gold’ antenna, using a minimal number of 

randomly located NF measurements where the locations are 

preserved between the gold and production antenna tests. Thus, 

the desire is to minimise the number of measurement points 

required to reliably recover the radiating elements’ complex 

excitations. Thus, the approach used in this paper can be seen 

presented in Fig. 1 below where the back propagated aperture 

field indicates the difference between the aperture field of the 

“faulty”, i.e. defective, production antenna, and the ideal ‘gold’ 

reference antenna. 

 

 
Fig. 1.  Top: Flow diagram of defective element detection using compressive 
sensing. Bottom: the ‘sparse’ difference antenna concept 

II. OVERVIEW OF THE EQUIVALENT CURRENTS METHOD 

The equivalent magnetic current approach utilises a Green’s 

function based methodology to obtain an equivalent magnetic 

current sheet over a convenient surface that encloses the AUT 

from the complex EM field acquired over a two-dimensional 

surface in front of some radiator.  Once the equivalent currents 

(EC) have been determined, they can then be used to propagate 

the electric fields elsewhere in space including to the far-field 

[3]. In this procedure, an electric field integral equation (IE) is 

set-up which relates the measured near electric fields to a set of 

equivalent magnetic currents which can be solved using an 

efficient yet very resource intensive method of moments 

procedure [3, 15]. This typically involves a point matching 

technique which converts the IE into an equivalent matrix 

equation, allowing it to be solved in one of several ways, e.g. 

by determining the Moore-Penrose pseudoinverse or from the 

least squares conjugate gradient (LSQR) method [3, 15]. The 

above is just one flavour of the wider subject of inverse source 

methods that can be applied to reconstruct to arbitrary surfaces 

and a good introduction to this whole subject can be found in 

chapter 9 of [15], along with [23, 24]. A detailed treatment of 

the EC method that is employed for this work can be found in 

can be found presented in [3,18] and instead only a brief 

COMPRESSIVELY SENSE BACK TRANSFORM TO EXCITATION DIFFERENCES

MEASURE AUT PNF SUB NYQUIST Pd

SUBTRACT Pr-Pd

KNOWN GOLD STANDARD ARRAY PNF PATTERN Pr

A NON-ZERO RESULT ABOVE GENERAL PROCESSING NOISE INDICATES A FAILED 
ELEMENT
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overview is presented herein. 

Let us assume that the radiator is placed in the negative z-

axis half-space and is radiating forward into the positive z-axis 

half-space, with the two regions bounded by an infinitely large 

xy-plane. If we introduce an infinite perfect electric conducting 

(PEC) sheet on one side of the surface, then in this case only the 

tangential components of the electric fields need be specified 

on the surface. Thus, by using the image theorem, the magnetic 

current can, for an antenna with a well-defined aperture, be 

expressed approximately as [3, 15, 18], 

( )
( )( )ˆ2   over the aperture

0                      elsewhere
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Since the radiated fields must be determined in the presence 

of the conducting sheet, this results in the solutions only being 

available for the forward half-space. The electric vector 

potential F may be defined in terms of the integral of this 

equivalent current as [3, 15, 18], 
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Here, primed variables are associated with the source point, 

un-primed variables are associated with the field point, the free-

space propagation constant is denoted by k0, and the 

displacement R can be expressed as, 

( ) ( ) ( )
2 2 2

R r r x x y y z z   = − = − + − + − (3) 

Since we can obtain the electric fields from the electric vector 

potential F using [3, 15, 18], 
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Here, Jm denotes the surface magnetic current sheet that we 

seek, g(r,r) the Greens function and E(r) is the electric field 

that is measured across the planar near-field measurement 

surface S, which is located at a distance of a few wavelengths 

from the AUT. This is a typical dimension required to minimize 

reactive coupling and AUT-to-probe multiple reflections [3]. If 

we assume a Cartesian coordinate system and polarization 

basis, we may write this in a more convenient form as [3, 15, 

18], 
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 Here we employ the field equivalence principle (represent 

the field at an arbitrary point in space as an integral over the 

surface on which the fields are known) and use just the 

tangential field on the measurement plane to fully characterise 

the field everywhere. This integral equation can be solved using 

a method of moments (MoM) approach [3, 15, 18]. Here, we 

can utilize the sampling theorem to replace the continuous 

current sheet with an array of fictitious magnetic dipoles, and 

the electric fields with a set of discrete samples. This is 

equivalent to using a Dirac delta function for the expansion of 

the current sources and enables us to replace the integration 

with a summation.  Thus, this allows us to express this as a 

system of linear equations, which we may express in matrix 

form as, 

   x myE G J =  
(8) 

  y mxE G J  = − 
(9) 

Here, the elements in the matrix [G] can be populated by 

evaluating numerically the integral, 
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Providing the reconstructed currents are more than a 

wavelength away from the measurement surface, as they will 

be in the case of a near-field measurement, then the area of 

integration may collapse to that of an infinitesimal current 

element. Thus, the coefficients for the fictitious magnetic dipole 

array can be obtained by solving [3, 15, 18], 

   
1

x myG E J
−

 =  
(11) 

   
1

y mxG E J
−

  = − 
(12) 

Crucially, this system of equations is in a form that is 

amenable for treatment by the CS method. 

As in a practical PNF measurement Ex and Ey would be 

determined using a probe antenna and to recover the true Ex and 

Ey probe pattern correction would be required [3]. For the 

purposes of our simulation, we assume a perfect Hertzian dipole 

probe which requires no probe pattern correction.  This in no 

way compromises the simulation and avoids the need to first 

simulate the PNF measurement with a real probe and then 

remove its effect to recover the true Ex and Ey field. 

III. USE OF CS IN THE DETECTION OF

DEFECTIVE RADIATING ELEMENTS

As described above, in this CS application we assume the 

availability of the failure-free reference ‘gold’ array antenna [3, 

4, 16, 17], comprised of N radiating elements’ excitation 

coefficients are defined as  1, , ,
T

r n NX x x x= , where xn is 

the excitation coefficients of the nth radiating element. The 

corresponding near-field pattern vector is denoted as 

 1, , , ,
T

r m MP p p p= , where pm is the probe voltage 

measured at the mth NF sampling point of a total of M sample 

points. Similarly, we can denote Xd as being the excitations of 

the (defective) AUT collected at sub-Nyquist sampling rate, and 

Pd as the probe measured near-field pattern collected from the 

AUT. Thus, we may consider the following system of equations 

where [10], 

P AX = + (13) 

where P = Pr – Pd, X = Xr – Xd, (0, 2) is additive white 

Gaussian noise (AWGN) with zero mean and variance 2 and 

is controlled by specifying a signal-to-noise ratio for the 

measurement. It is important to note that both Pr and Pd are 

sampled at the same locations and at a sub-Nyquist rate. As 

stated in the previous section the equivalent currents 

formulation of (11) and (12) is of the form of (13) where P 
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relates to E, X to J and A to G with the binary sampling matrix 

  CMK selecting M rows randomly from the G matrix with 

elements defined by (10) and G  CKN. 

The purpose of array diagnosis is to detect the faulty 

elements. We denote the number of faulty elements as F, which 

is assumed to be much smaller than the number of radiating 

elements N. Thus, X is an F-sparse vector in which only the 

faulty elements of the original array contribute to the sparse 

vector. Thus, we have successfully converted the problem into 

a sparse one.  The standard CS technique can be used to recover 

Xd with the knowledge of the excitation coefficients of the 

‘gold’ antenna, Xr, by solving the following problem [3, 10], 

0

2

2

min

. . 

X
X

s t P AX − 

(14) 

where 2 is determined by the noise level affecting the 

measured samples Pd and Pr. Here it is noted that the l0 problem 

is non-convex and difficult to solve. In compressive sensing, it 

has been relaxed to an l1 problem with guarantee on exact 

recovery when RIP is satisfied [10]. Therefore, the optimization 

problem is relaxed to, 

1

2 2

2
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. . 

X
X

s t P AX − 
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The above l1 problem is convex, which could be solved by 

standard convex optimization tools. The overall procedure of 

CS based defective array detection can be seen illustrated in 

Fig. 1.  A comprehensive discussion of the CS principle is 

beyond the scope of this paper. More information is available 

in the open literature, e.g. [10].  To efficiently solve (15), 

several software packages are available, e.g. CVX [19], YALL1 

[20], and SPGL1 [21] which are all readily accessible and can 

be deployed.  For this study, we have chosen to utilize the 

YALL1 algorithm due to its desirable balance of efficiency and 

accuracy [3]. Clearly, the CS process can be directly applied to 

a one-dimensional linear array, where Xd is the recovered 

excitations. However, this can be easily extended to the two-

dimensional array case where we reorder the two-dimensional 

array of excitations into a one-dimensional vector whilst 

managing the correct phase relationship between two-

dimensional elements and NF radiation. For example, an 8 x 24 

element array Xd has 192 elements, and in the following 

sections we will show the application of CS for two-

dimensional array diagnosis. Of course, the assumption here is 

that we know a priori the excitations of the gold antenna, Xr 

from which we can derive Xd and then subsequently the 

corresponding far-field pattern, where in practice Xr can be 

determined from an auxiliary measurement, computational 

electromagnetic simulation, etc. To get the maximum 

performance from the CS algorithm we need to minimise the 

number of unknown coefficients X, these being the number and 

location of the fictitious magnetic dipoles over the array 

aperture. This is best achieved by matching their location to the 

physical location of the centre of each array element and is 

hence the only required a-priori information, along with the 

location of the array surface relative to the planar NF scan. 

IV. CS RECONSTRUCTION PERFORMANCE

In our previous work on NF CS, we considered the simulated 

diagnosis of a large 20x28 = 560 element array and in [4, 17] 

we gave an indication of the performance achievable. If the 

array had an expected failure rate of circa 1% (6 faults in this 

case) then we needed to take around 183 samples (1.5% of 

Nyquist sampling needed for classical back projection). Here 

Nyquist sampling for planar near-field is defined as having data 

point spacing of finer than half-wavelength across the 

measurement plane which itself is specified in relation to the 

desired far-field maximum pattern angle and AUT-to-probe 

separation distance [3]. However, if we were expecting a failure 

rate of 4% (22 faults) then we needed to take a larger number 

of around 380 samples (3.1% of Nyquist). This array had an 

element spacing of 0.41 and in this paper we aim to investigate 

how scalable these results are for a smaller massive MIMO 

array (8x24 = 192 elements), but one that has larger array 

element spacing (0.5 x 0.7). If we aim for a fault detection 

level of at least 2% (4 faults), then Fig. 2 shows how a set of 

four faulty elements (with fault levels shown inset to figure) 

effects the far-field (FF) pattern of an array with intended 

excitation of uniform amplitude and phase. 

Fig. 2. Radiation pattern of 8x20 array with and without 4 randomly located 

faults of the type shown in the inset box. 

For this work, and our previous work reported above, all our 

simulation of the measured NF includes the fact that the RF 

system will add -60dB of noise relative to the peak NF signal. 

In addition, all the faults in our simulations are of the amplitude 

and phase form shown inset to Fig 2, unless otherwise stated in 

the specific simulation.  Specifically, the types of faults 

included do not merely represent the binary change of turning 

off given elements, but rather include the case of incorrectly set 

amplitudes and or phases which are more representative of 

reality. In addition, we also address the important case of purely 

phase errors as these tend to be more deleterious to the ensuing 

far-field pattern. 

It is clear from this FF pattern cut that any attempt of 

detecting this low level of fault by looking at the FF pattern 

would be fruitless. Also shown in Fig. 2 is the equivalent 

multipath level (EMPL) [3], i.e. the difference between the 

faulty pattern and the gold antenna, with an average EMPL of -

46 dB and a gain loss of 0.16 dB for 4 random faults.  As in our 

Four faults of:
-6 dB , 45 °
-10 dB , -75°
-30 dB , 135°
-20 dB,  110°
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previous work, we use a statistical measure of reconstruction 

performance based on plotting the cumulative distribution 

function (CDF) [3, 4] of the rms error of the reconstructed array 

amplitude excitation over 50 runs of randomly located faults 

with a fixed set of randomly located sample points. 

Fig. 3. CDF of the rms array excitation error over 50 runs for the case of 4 
randomly located amplitude and phase faults of the form shown inset to Fig. 

2. Also shown inset is the 25 pseudo randomly located samples contained with

the projection of the array aperture in the sampling plane.

Fig. 3 shows the CDF result for the case of 4 faults of the 

type shown in Fig. 2 with just 25 pseudo random samples 

located within the 3 spaced NF measurement plane, with the 

NF samples contained within the boundary defined by the 

projection of the array aperture in the NF measurement plane 

(white square bounding the red sample points shown inset to 

Fig. 3). Here, the blue trace represents the RMS error level of 

the amplitude excitation viewed across the whole array, the red 

trace shows the maximum RMS error excitation across the 

elements, and the yellow trace shows the maximum value of the 

RMS excitation error across just the faulty elements (“flty 

elmnts”) within the array, cf. [4].   

Fig. 4. Typical level of amplitude and phase reconstruction for 25 NF 

samples, top the case of Fig. 3 with 4 faults; Bottom the case for 1 fault. 

As in our previous CS work, we assume the RF system will 

add -60dB of noise relative to the peak NF signal and this is true 

for all the simulated measurements presented in this paper. The 

results of Fig. 3 are repeatable if we let both the sample 

locations and the fault locations be randomly chosen. Similar 

results are also seen over a wide range of values for the 

 parameter in (15). We have found this agreement to be true 

for all the other CDF results presented in the paper but have, 

due to the constraints of available space, chosen just to present 

here the case of fixed sample points and random fault location 

as this is how the production test facility will be used in 

practice. 

Fig.3 shows an 80% CDF level of -23.8dB for the rms 

reconstruction error, and Fig. 4 (top) shows a single example of 

what the reconstructed array excitation looks like on a false 

colour grid, for both amplitude and phase, compared to the true 

faulty array. Also shown in Fig. 4 (bottom) is the case for just 

one fault (-10dB, 45°) indicating a very low level of rms 

reconstruction error of -36.2 dB for the 80% CDF point, 

evidenced by the low background noise to the reconstruction. 

Comparing these results for array elements of size (0.5 x 0.7) 

with those of a previous study initially presented in reference 

[4] which comprised an 8x24 array of element size 0.41 shows

the smaller elements difference field to be weaker and more

confined to the projection of the array aperture in the

measurement plane, resulting in a 4 fault 80% CDF rms

reconstruction error of -25.6dB, several dB better than for the

(0.5 x 0.7) element case of Fig. 3.

Fig. 5. Reconstruction of an array with two 5.6° phase only faults. Left 

amplitude, right phase. The white diamonds indicate the true fault locations. 

In our previous NF CS work with a large 512 element array, 

we found several dB improvement in reconstruction rms error by 

averaging results across six sets of 36 samples.  However, no 

such benefit was found for these smaller 192 element arrays, 

probably due in part to the small number of element-fails 

required to achieve our 2% maximum failure rate target. As an 

indication of the resolution that CS can provide, Fig. 5 shows the 

reconstruction of an array with two phase-only faults of just 5.6°, 

representing a least-significant single bit failure of a 6-bit digital 

phase shifter. The clear identification of the two-phase faults, and 

lack of background noise, is clearly shown in the figure. 

A summary of the NF CS rms amplitude reconstruction error 

for different levels of element fault is shown in Fig. 6. From this 

we can see that our target of detecting up to 2% element error 

(4 faults in this case) can be achieved with just 25 samples with 

a reasonable -25dB rms reconstruction error. Also shown on the 

figure is that 49 samples can offer up to six faulty element 

detection to better than -22dB rms error. For this study we will 

take forward the 25-sample case that offers the required 2% 

failure detection and in the next section consider the 

requirements for a practical implementation using a fixed array 

of 25 pseudo randomly located NF samples. 
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Fig. 6. 80% CDF rms amplitude reconstruction error vs number of faults for 

the 8x24 array for different numbers of NF samples. 

V. A TEST SYSTEM IMPLEMENTATION USING A

PLANAR ARRAY OF 25 NF SAMPLES

As stated within the introduction, the aim of this work is to 

implement a rapid production test system for massive MIMO 

arrays, with an expected manufacturing fault level for the 

radiating elements at or below 2%. In the previous section we 

found that just 25 pseudo-randomly located NF samples are 

required to achieve reasonable reconstruction accuracy for the 

8x24 array. Such a system could be implemented using a 

robotic arm mounted probe to provide the NF samples. 

However, in a production test environment, when a large 

number of identical devices need to be tested, it is attractive 

from a speed perspective to use 25 low-cost probes (for example 

one based on an absorber nested dual polarisation Vivaldi 

antenna [22]) arranged on the NF plane and connected via a PIN 

switch matrix to a Vector Network Analyser (VNA). The 

absorber nested, low scattering cross-section, well-matched, 

elements of [22] can be integrated in the overall absorber sheet 

that the array transmits into thus offering low interference to the 

AUT. For the low microwave frequencies intended for this 

work (3.5GHz) such an implementation would be faster, 

cheaper and more compact than implementing a robotic-arm 

based scanning probe.  However, for smaller scale production 

testing a robotic-arm is a viable alternative. 

As described earlier, cf. (Fig. 1), the use of CS in array 

diagnosis is predicated on measuring the NF difference between 

the gold antenna and the antenna under test (AUT). In practice 

this must entail the NF measurement of the gold antenna at the 

25 sample points and then the placing of the AUT in exactly the 

same location to measure the same 25 NF samples. The use of 

a fixed array for the sample point will help the accuracy of this 

process but we need to understand the tolerance of the CS 

process to both transverse location errors (x,y) between the gold 

and AUT antennas as well as the longitudinal (z) ones. We first 

consider x,y location errors and in Fig.7, by way of an 

illustration, we show the effect on the full NF difference pattern 

between exact co-location and an x = y = 0.01 = 0.9mm 

transverse translation of the AUT with respect to the gold 

antenna. 

Fig. 7. The full NF difference pattern for two faulty elements: left full 

alignment between gold and AUT; right x=y = 0.01 translation between gold 

and AUT. 

The 80% CDF rms reconstruction error for the aligned case 

is -29.4dB and for the transverse misaligned case is -28.6dB, 

which is an acceptably small level of degradation and represents 

a misalignment error in x and y of 0.9 mm. A well-designed test 

rig will easily be able to achieve this [3, 15]. We next consider 

a longitudinal (z) location error between gold and AUT. Fig. 8 

shows the NF difference pattern for the case for a z error of 

0.002 = 0.17mm (left) and 0.01 = 0.9mm (right), the 

corresponding 80% CDF rms reconstruction errors are -28.3 dB 

and -21.1 dB.  Clearly the tolerance to longitudinal alignment 

of the CS measurement system is much more critical than that 

of transverse alignment. 

Fig. 8. The full NF difference pattern for two faulty elements: left z 

misalignment between gold and AUT of 0.002; right z misalignment 

between gold and AUT of 0.01. 

This observation, for antennas with main beams aligned 

predominantly in the z-axis is consistent with the findings of 

standard planar near-field scanning where is it noted that 

measurement planarity is generally a more significant term 

within the overall facility uncertainty budget than the 

corresponding transverse effect [25, 3, 15].  This result is not 

surprising when we realise that any z translation between gold 

and AUT antennas is effectively a phase change across the AUT 

array, so every element has effectively a phase fault added to it, 

rendering the system non-sparse. Even if we could engineer a 

mechanical alignment system that could be accurate to within 

0.17mm (0.002 = 0.7°), such a phase change could be easily 

generated by thermal drift of the RF subsystem between the gold 

and AUT measurements. This is a problem that has not been 

highlighted before in the significant number of publications on 

CS array antenna diagnosis and is a factor that could render the 

approach entirely ineffective. 

For operation at higher frequencies the mechanical alignment 

requirements become more stringent with the shorter 

wavelength, and thus the position repeatability of the robotic 

arm becomes more problematic making the array of probes 

solution a more viable approach. 
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In this section we propose and verify through simulation a 

scheme to overcome the z tolerance issue highlighted in the 

previous section.  The proposed approach is as follows: 

• Count cells of the reconstructed array with amplitude < ± 1

dB of the known gold array excitation and assume there is

no error on these cells.

• Similarly, count cells of the reconstructed array phase < ±

5° of the known gold array excitations and assume there is

no error on these cells.

• Plot these values as a scan through various values of z

deflection are tried in the CS code over a range of z = ±

0.05 with a step size of 0.0025.

• Pick the set that has the largest count (i.e. minimum

number of faulty elements) to give an estimate of the true

z error.

Here, z-span and step size were predicated on knowledge of 

the anticipated upper-bound positioning tolerance that is 

achievable using conventional precision machined interfaces, 

and alignment dowel pins, as well as expected RF subsystem 

thermal drift.  Fig. 9 shows this for the case for 2 faults, 25 

samples and a z-location error set at 0.03. We can see from 

this case that the peak number of error free cells is found at the 

correct z-location value of 0.03 for both the amplitude and 

phase count. It is also possible the amplitude and phase peak 

counts do not coincide (for example amplitude count finds 

0.03, phase count finds 0.0275).  

Fig. 9. Number of non-faulty elements vs z-location error to locate the 

predicted value of the z-location error (true value = 0.03) 2 faults and 25 

samples. 

In this case we compute the recovered array excitations for 

both z-location values and average the result.  We have tried 

several values for the amplitude count criteria (±1dB used 

above) and the phase count criteria (±5° used above) and found 

that ±1dB and ±10° gave the most consistent results.  It is also 

clear from Fig. 9 that CS does indeed ‘work’ to some extent in 

that over a range of z position errors it can find around 160 fault 

free array elements, but the true answer is 190, and this is only 

achieved when the correct value of z is chosen.  For this 

application we are looking for high accuracy and especially low 

false alarm rates hence this is an issue that needs to be resolved. 

Fig. 10. CDF rms amplitude reconstruction error for z-location error process 

(25 samples 4 randomly located faults) taken over 50 sets of different fault 

locations. Gold and AUT antennas are misaligned in z by 0.03 

Fig.10 shows the CDF rms amplitude reconstruction error for 

the above z-location error process when repeated 100 times with 

25 fixed samples, and 4 randomly located faults.  Shown on this 

figure are the CDF results for the following cases of 

reconstructing the array excitations using: the z-location error 

detected using the amplitude counts; the z-location error 

detected using the phase counts; the true value of z-location 

error (0.03 in this case); the case with no attempt at z-location 

error correction. Clearly, the recovery process works correctly, 

and it is worth noting the 10dB improvement in the amplitude 

reconstruction error that this process provides. 

VII. IMPROVING ACCURACY USING

PARTIAL EXCITATION OF THE ARRAY

We can further improve the accuracy of this system by 

adding additional measurements that excite just parts of the 

array, perform the diagnostics on those parts, and then combine 

the results and take an average over the set of predicted 

excitations.  We demonstrate this approach using the following 

example: 

• First, excite the full array and undertake reconstruction

process described in the previous section. This provides

two sets of array excitation predictions, one based on the

amplitude-based z-location error search, and one for the

corresponding phase-based search.

• Split the array into two by exciting just the bottom 12 rows

of elements and repeat the reconstruction process with all

25 NF sample points.

• We then repeat this by exciting just the top 12 rows, again

with all 25 NF samples. From the predicted excitations of

these two sub-arrays, we can combine the result to obtain a

second set of recovered excitations for the full array.

Again, there are two sets of array excitation predictions

from the amplitude and phase-based z-location searches.

• Additionally, we can repeat this subarray process, but this

time using just the bottom and top half of the sampling

array when exciting the bottom and top half of the array

respectively. From the predicted excitations of these two

sub-arrays, we can combine the result to get a third set of

recovered excitations. Again, there are two sets of array
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excitation predictions from the amplitude and phase-based 

z-location searches.

• This provides in total 6 sets of array amplitude and phase

excitation predictions, from which we can obtain a single

averaged reconstruction for the AUT.

We call this procedure Split Array Reconstruction, and 

undertake this process 100 times with 25 fixed samples and 4 

randomly located faults and in Fig. 10 plot the resulting CDF 

rms amplitude reconstruction error. Compared to the results of 

purely measuring the full array, we see an improvement in the 

CDF rms reconstruction errors of several dB over the full range 

of CDF values, i.e. the left most trace in the Fig 10 labelled: 

“Split Array Reconstruction ALL AMP rms error”. 

Controlling the array excitation during production testing is 

entirely viable as the array manufacturer will have 

unconstrained access to test the arrays with different beam 

steers and thus have access control of the amplitude and phase 

of each element. Indeed, most MIMO arrays are made up of sub 

array ‘tiles” and so in the case of our 24x8 array each tile may 

be 8x8 elements, which would easily lend itself to the proposed 

Split Array Reconstruction with different combination of these 

8x8 tiles turned on or off. 

To see what this looks like for a particular reconstruction, 

Fig. 11 compares the array amplitude and phase reconstruction 

when the z-location error procedure from the previous section 

is used (left) and when added to this is the Split Array 

Reconstruction process (right). Although, as mentioned above 

the CDF is improved by just a few dB, the reconstructed 

excitations are clearly less noisy for the Split Array 

Reconstruction. 

(a) (b) (c) (d) 
Fig. 11. Reconstructed array amplitude (a), and phase (b) for average 

excitation when z-location error procedure of section VI is used.  Added to 

this is the Split Array Reconstruction process amplitude (c) and phase (d). 

With the ability to accurately detect the exact fault levels 

limited, it is possible to create an element level pass/fail fault 

detection process by looking for failed elements based on using 

the amplitude and phase error search we used for the z-location 

error process described above. The devised procedure is as 

follows: 

1. Consider each cell of the reconstructed array amplitude

with excitation > ± 1 dB of the gold array to represent a

faulty cell and set value to one, otherwise for the faultless

cell set to zero. This provides one set of binary fault

predictions for the array.

2. Repeat the above process, this time with excitations > ± 10°

representing a faulty cell, providing a second set of fault

predictions.

3. The previous two steps are then repeated for different

search levels of > ±2dB and >± 20°, and again for > ±3dB

and >± 30°.

By adding these three sets of binary pass/fail for each array 

element, a fault likelihood level is created with a range of 0 to 

3, with 3 representing a cell most likely in error. This process is 

performed for both the array amplitude reconstruction and the 

phase reconstruction. These two results are kept separate as the 

CS process is effective for differentiating between an array 

element amplitude fault, and a phase fault, as demonstrated 

earlier within the text, cf. Fig. 5. 

Fig. 12. Array element fault likelihood when based on an amplitude fault 

search (left) and a phase fault search (right). The white diamonds indicate the 
true fault locations. 

Thus, a likelihood of an amplitude fault, a phase fault, or a 

fault on both is provided. For the Split Array Reconstruction 

results shown in Fig. 11, the resulting fault likelihood is shown 

in Fig. 12 when based on an amplitude fault search (left) and a 

phase fault search (right). Taking a 50% likelihood as a true 

fault we note that both the amplitude and phase-based searches 

indicate the correct four faults and their true location. 

Fig. 13. Bar-chart showing the fault likelihood process performance in terms 
of: faults correctly located, faults missed, and faults falsely identified. Case of 

25 fixed samples and 4 randomly located faults. Statistics taken over 100 runs 

with different sets of fault locations 

A statistical view of the performance of this procedure is 

shown in the bar chat of Fig. 13, where the Split Array 

Reconstruction and fault likelihood process is undertaken 100 

times with 25 fixed samples and 4 randomly located faults 

(shown listed in the inset to Fig. 2). Fig 13 shows that 95% of 

the time the 4 faults are located correctly for the amplitude-

based search, with 85% for the phase-based search.  Missed 

faults are found to be less than 10% for both amplitude and 

phase-based searches. False faults are <10% for phase-based 
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searches but single false faults can occur up to 30% of the time 

for amplitude-based searches. Fig. 14 shows the bar-chart for 

the case of just 2 randomly located faults where the fault 

location process is near perfect. 

Fig. 14. Bar-chart showing the fault likelihood process performance in terms 
of: faults correctly located, faults missed, and faults falsely identified. Case of 

25 fixed samples and 2 randomly located faults. Statistics taken over 100 runs 

with different sets of fault locations. 

Fig. 15 shows the bar-chart for the case of just a single phase 

only fault of 22.5° randomly located faults where the fault 

location process is near perfect, with a correct identification of 

the fault occurring 88% of the time. Shown inset to this figure 

is a single example array excitation reconstruction from the 100 

randomly located fault showing clear low noise reconstruction. 

Repeating the process for a single phase only fault of 11.2° gave 

poor results. However, running the process for the case when 

the AUT has a single randomly located -3dB fault over 100 runs 

lead to a 75% success rate in correctly locating the fault. 

Fig. 15. Bar-chart showing the fault likelihood process performance in terms 

of: faults correctly located, faults missed, and faults falsely identified. Case of 

25 fixed samples and one randomly located phase only fault of 22.5°. Inset to 

figure is a single example of the amplitude and phase reconstruction. Statistics 

taken over 100 runs with different sets of fault locations 

For cases where there are more than 4 faults, the performance 

rapidly tails off with 75% success rate of locating all 4 faults 

correctly dropping to 55% for the case of 6 faults.  However, 

when a complete row of the array is faulty, as when a 

beamformer has a row out of calibration, this can be reliably 

detected, as in the example shown in Fig.16 where a row fault 

of 22.5° is picked up well by the fault likelihood process.  In 

practice this means that even if the exact elemental faults are 

not perfectly determined, sufficient warning is provided to the 

user that the production antenna requires further remedial 

action. 

Fig. 16. Array element fault likelihood for case of a beamformer row fault of 

22.5°:  amplitude fault search (left) and a phase fault search (right). The white 
diamonds indicate the true fault locations. 

Continuing to look at the phase reconstruction performance 

of the Split Array Reconstruction, Fig. 17 compares the rms 

phase reconstruction error across the whole array along with 

that for just the fault elements for the case of both 2 and 4 faults. 

Clearly, the accuracy of the reconstruction improves 

significantly as the number of faults drop, as the problem CS 

solves becomes more sparce. Running the Split Array 

Reconstruction process for the case when the AUT has no faults 

over 100 times showed a 100% no fault detection, and 0% false 

alarm rate, Fig. 18 shows a typical reconstructed array 

excitation. 

Fig. 17. CDF rms phase reconstruction error for the Split Array 

Reconstruction (SAR) process for both the 4 fault and 2 fault case (25 

samples). Statistics taken over 100 runs with different sets of fault locations 

Finally, we summarise the performance of the Split Array 

Reconstruction (SAR) process over a range of faults from 0 to 

6, with Fig. 19 showing the 80% CDF rms error amplitude and 

phase of the reconstructed array across the whole antenna 

compared to the true faulty antenna (solid red and blue lines), 

the data being taken over 100 runs of randomly located faults. 

These plots clearly show the accuracy of the reconstruction 

increases as the number of faults reduces. 
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Fig. 18. Reconstructed array excitation for zero fault case. Left: amplitude, 

right: phase. 

Fig. 19. Summary of the reconstruction errors compared to the true faulty 

array for the Split Array Reconstruction process over a range of faults.  Solid 
lines are 80% CDF rms error amplitude across the whole array; dotted lines 

are the 80% CDF rms error amplitude across just the faulty elements. 

Also shown in Fig. 19 is the corresponding rms error 

amplitude and phase across just the faulty elements (dotted red 

and blue lines). Here we see that the accuracy of amplitude 

reconstruction across most fault levels is about -10dB, and with 

no faults it is down to -37dB. For the corresponding faulty 

element phase reconstruction accuracy, the value fairly steadily 

decreases from a maximum of 75° at 6 faults to 0.9° at zero 

faults. 

VIII. SUMMARY AND CONCLUSION

In taking the CS technique for array diagnosis to a practical 

level through measurement simulation and undertaking a 

tolerance study we have identified a fundamental flaw in the 

method, this being the longitudinal alignment tolerance 

required between the gold reference antenna and AUT. To not 

significantly impact the reconstruction accuracy this z-axis 

alignment needs to be better than 0.002 or 0.17mm at our 

working frequency of 3.5GHz. To compound the problem this 

is an electrical path length difference tolerance, so even if the 

mechanical z-axes are both perfectly aligned, this 0.002 path 

length change can be produced by a thermal drift within the RF 

subsystem between the gold antenna measurement and the AUT 

measurement, and is a drift of only 0.7°. As far as the authors 

are aware, this issue has not been exposed in the open literature 

before and makes the basic gold/AUT difference pattern CS 

based array diagnosis process unusable in practice without 

some form of mitigation being implemented. 

However, in this paper we have proposed and verified 

through simulation a process by which this problem can be 

overcome and recover nearly all the expected performance from 

the basic CS array diagnostic technique. The performance 

analysis for the specific massive MIMO array considered here 

suggests that fault levels up to 2% can be well identified, with 

performance tailing off as the number of faults increase and 

hence the problem becomes progressively less sparce. 

Furthermore, we obtained similar results for a 12x16 which has 

the same number (192) of radiating elements.  We have also 

looked at larger arrays 20x28 (512 elements) and this 2% rule 

continues to apply. 

The speed of this array diagnosis procedure is its major 

benefit, a single run of the Split Array Reconstruction process 

takes 18 seconds (on an iMAC 3.1 GHz Quad-Core Intel Core 

i5) with MATLAB simulation code. The measurement 

processing time is equally short when the 25 randomly placed 

fixed NF probes are connected via a PIN switch matrix to a 

Vector Network Analyser (VNA), even if we run the VNA at a 

10Hz bandwidth to maximise the noise suppression. Note that 

throughout all the simulation work we have used a -60dB level 

of noise for all the ‘measured’ signals in our simulations. 

However, in practice, our RF link budget calculations suggests 

that achieving a circa 80 dB dynamic range for a 100 Hz IF 

bandwidth is realistic. Assuming the entire RF measurement 

takes circa 10 seconds, a very conservative estimation that is in 

part predicated upon the switching and settling time of the 

massive MIMO antenna, the whole test could take less than 30 

seconds. For tested devices that show faults that can be 

corrected, re-testing of the AUT, this time with fewer faults 

(and hence more sparsity) will provide even more accurate 

determination of any remaining faults cf. Fig. 19. With such 

short test times, several rounds of correction and re-test become 

easily viable, and we have shown that a single 22.5° can be 

detected so convergence to a near perfect array becomes 

possible.  

It is important to emphasise that because the CS process is 

based on the difference between the gold and AUT near-field, 

the actual excitation used for the array elements is not 

important, so any excitation in amplitude and phase can be 

used. Indeed in [16, 17] we show that the system works 

correctly when diagnosing a scanned beam in azimuth and 

elevation. Thus, a practical implementation of the proposed 

system may well employ a number of beam directions and 

shapes. 

Comparing this proposed system to conventional planar NF 

measurement at Nyquist sampling and subsequent back 

projection to the array aperture would require 1,537 NF 

samples. This is based on a NF sampling region size of 

26.514.5 which would provide FF azimuth and elevation 

patterns valid out to 60° [3]. Our proposed method requiring 

just 25 samples represent 1.6% of the amount required by the 

classical Nyquist sampling and conventional aperture 
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diagnostics. 
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