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Abstract—This paper presents the first investigation of a 

two-dimensional, compressed sensing based spherical mode 
filtering reflection suppression technique for far-field antenna 

measurements when applied in a complex electromagnetic 
environment, e.g. when the test antenna is in the presence of a 
an electrically large parasitically coupled scatterer. Such 

scatterers inevitably influence measurement results including 
radiation pattern, cross-polarisation level, gain, directivity, etc., 
and are of particular concern when testing in a far-field mode; 

and especially so when testing outside. Through a massive 
numerical simulation which utilised a proprietary full-wave, 
three-dimensional, computational electromagnetic solver, the 

viability of this new processing technique has been verified, with 
preliminary results showing that the technique is valid even 
under such complex scattering conditions. 

Index Terms—Model based systems engineering, compressed 

sensing, sparse sampling, reflection suppression, mode filtering, 

full-wave computational electromagnetic simulation. 

I.  INTRODUCTION 

In many applications, we are required to acquire the full 

two-dimensional far-field pattern of an antenna under test 

(AUT) while adhering to the standard spherical sampling 

theorem [1]. Often, these measurements are undertaken in an 

indoor, screened, anechoic chambers at a far-field distance, or 

within a Compact Antenna Test Range (CATR). So as to be 

able to reduce the inevitable effects of range multipath 

reflections, i.e., the presence of deleterious parasitically 

coupled scatterers, it is well known that that by rotating the 

antenna under test with an intentional positional offset, and 

subsequently applying a mathematical translation on the 

measured pattern data to translate the antenna back to the 

rotation centre, it is possible to filter out the higher order 

modes that are associated with the parasitically coupled 

multipath [1]. When the measurement is performed on an 

equally spaced abscissa, the conversion from the two-

dimensional angular domain to the equivalent spherical mode 

domain can be efficiently computed by first decomposing the 

tangential orthogonal electric field components onto a set of 

Fourier coefficients which can be accomplished efficiently by 

means of the mixed-radix Fast Fourier Transform (FFT) [2]. 

These Fourier coefficients can then be mapped onto a set of 

spherical mode coefficients (SMC) whereupon the mode 

filtering, etc. can be applied [1]. 

It is, however, not always convenient or perhaps possible 

to acquire the data precisely on a plaid, monotonic, and 

equally-spaced, periodic, angular grid. This may be because 

of equipment accuracy limitations, or as a result of time 

constraints. This becomes all the more crucial when these 

measurements are taken using out-door facilities, which is 

often the case when testing electrically large antennas where 

the far-field distance is sufficiently great to make indoor 

testing uneconomical [1]. Additionally, such outdoor tests are 

also prone to limited stability making rapid acquisitions even 

more important. Furthermore, after stability, range reflections 

and multipath are perhaps the next most significant terms 

within the facility level uncertainty budget making the 

application of effective reflection suppression to sparsely 

sampled, irregularly sampled data particularly desirable [1]. In 

reference [3], one of the authors of this present paper 

demonstrated that for the case of scattering contaminated far-

field one-dimensional data, it was possible to obtain the 

requisite cylindrical mode coefficients (CMC) by solving a 

system of simultaneous equations using a compressive 

sensing (CS) based sparse sampling (SS) technique. This 

suggested that a similar approach may perhaps be harnessed 

for the two-dimensional analogue which is the focus of this 

paper. 

To verify the viability of this new approach, a large, 

computationally intensive, simulation campaign has been 

employed. The first results of which are presented in this 

paper. The layout of this paper is as follows; Section II 

presents an overview of the novel spherical mode CS based 

reflection suppression technique.  This is followed by Section 

III which is mainly devoted to describing the simulated 

“measurement” setup, which was used for the numerical 

experiment simulations. Also, in this Section, the obtained 

results are explained in detail, whilst Section IV demonstrates 

the validity of the new sparse sampling, spherical mode 

filtering, based scattering suppression technique which was 

utilized to predict characteristics of the AUT in the complex 

electromagnetic environment. The paper is finalised by 
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II. OVERVIEW OF CS BASED SPHERICAL MODE 

FILTERING ALGORITHM 

To accurately recover the modes associated with the 

antenna, the Nyquist sampling requirement states that the data 

density should, on average, be sufficiently great to 

accommodate any significant higher order modes, including 

those arising from the parasitically coupled scatterers [1]. This 

prevents aliases from contaminating the computed antenna 

modes. Furthermore, unevenly sampled data can usually result 

in spectrum leakage [3]. This occurs as a result of the Fourier 

basis losing its orthogonality when the sampling grid becomes 

irregular. This is one of the principal advantages of the CS 

approach in this area of application, since at its very heart, it 

inherently requires the samples to be taken on an irregular 

grid. In those earlier works [1, 3] it was also shown that when 

utilising the mode filtering scheme described above, the 

antenna modes occupy only the lowest order modes since the 

coordinate translation to relocate the AUT to the origin of the 

measurement coordinate system effectively reduces the 

Maximum Radial Extent (MRE). This is a conceptual sphere 

that circumscribes the majority of the current sources, and 

which is originated at the rotation centre. As a result, the 

number of modes containing a significant amount of power is 

greatly reduced since, according to theory, the mode cut-off is 

determined by the electrical size of the MRE. In other words, 

the relevant modes are sparsely distributed which enables the 

problem to be treated as a Compressed Sensing (CS) recovery 

problem [3]. With the SMCs recovered, a filtering function 

can be applied to preserve those modes that are associated 

with the physical dimension of the antenna [1, 3], whilst 

attenuating the effects of spurious reflections in the 

environment which appear as additional parasitic sources [1, 

3]. 

Recent advancements in CS algorithms [4, 5] have made 

it possible to effectively solve such problems which 

classically have been considered to be underdetermined. 

Compressed Sensing can leverage the sparsity of data in the 

Fourier basis by aiming for a parsimonious solution that 

contains the smallest number of non-zero coefficients. By 

formulating the problem in terms of CS, we not only reduce 

the number of required sampling points (which can be far 

fewer than what is prescribed by the classical Nyquist 

criterion), but crucially, we eliminate the need for data to be 

collected regularly on the equispaced, two-dimensional 

spherical sampling grid. In fact, as noted above, random or 

pseudo-random sampling becomes essential. Our purpose 

here is to demonstrate that the CS algorithm can effectively 

reconstruct the antenna patterns, even with significantly 

relaxed sampling requirements and in the presence of a large 

parasitically coupled scatterer. The utilization of the CS 

approach in mode-filtering based reflection suppression 

applications as is employed here significantly broadens its 

applicability, enabling sub-Nyquist sampling and 

considerably reducing the requirements for positioning 

equipment accuracy, although requirements for precision still 

persist. The next section introduces the computational 

electromagnetic model that was constructed and used to verify 

the feasibility of this new technique. 

III. THE NUMERICAL EXPERIMENT SETUP 

To create a numerical model of the requisite experiment, a 

proprietary, full-wave, three-dimensional computational 

electromagnetic solver Altair Feko [10] was utilised. To have 

a benchmark for obtained results, a model of 48-element finite 

antenna array has been used as an AUT [6] at 3.5 GHz. This 

radiator was perturbed with the inclusion of a perfect electric 

conducting (PEC) square plate and was used to create the 

complex environment. This can be seen presented below in 

Fig. 1 which replicated the positioning employed by a 

traditional “model tower” φ over θ spherical positioning 

system [1]. 

 

Fig. 1. The “measurement” setup, the AUT is on the left, and the scatterer 

is on the top of the figure. 

Here we see on the left, the AUT is placed 360mm from 

the origin of the simulated spherical “measurement” setup. 

Also, in Fig. 1, the AUT can be seen positioned at θ = 30°, i.e. 

offset from its nominally “normal” position. It is specially 

demonstrated here to illustrate the simulated measurement 

movement of the AUT in θ-direction during the parametric 

studies. On the right, a large PEC scatterer is placed. Its centre 

is positioned 1000mm up and right from the global coordinate 

system origin. This PEC plate has dimensions 400x400 mm 

which is larger than the array antenna. It is worth to mention 

that the scatterer is positioned orientated at approximately 25° 

to the y-z plane, to achieve a maximum effect in disturbing far-

field pattern of the AUT. As in reference [6], the AUT was 

excited by an ideal network with equal amplitude and phase at 

all input ports. In the present case, the excitation is not a matter 

of the investigation, however, the complex nature of the field 

distribution makes it more attractive than a simple antenna 

even with a large aperture. Radiation characteristics of the 

AUT can be found in the same papers previously published by 

the authors [6]. 

The simulated experiment required that this model be 

solved multiple times to obtain the perturbed “measured” 

radiation pattern. Thus, the AUT was sequentially 

repositioned within the model to represent measurements 

taken at a range of (θ,φ) orientations where these angles are 
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expressed in the range coordinate system. This simulated far-

field measurement then required that the far-field pattern of 

the model be obtained in the “boresight” direction at θ = 0°, φ 

= 0° in the global coordinate system, shown in Fig. 1. for 

every position of the AUT in “measurement” spherical 

coordinate system. Thus, the AUT should sequentially move 

across all values of θ in x-z plane. For every such θ position 

the AUT is rotated around the normal to the AUT, changing 

value of φ from -180° to 177°. Using a step of 3° this yields 

7320 points to be “measured”, i.e., 7320 individual method of 

moment (MoM) simulations. Although the CS technique does 

not need this much data, by simulating a classically sampled 

measurement it allow us the ability to process the data using 

classical, i.e., standard, spherical mode filtering techniques [1] 

and provides a large ensemble of measurement from which we 

may select a smaller set of data to use with the CS processing. 

Furthermore, as CS is inherently a statistical process, we wish 

to run the processing many times with different sample sets to 

be able to determine meaningful metrics for its performance 

which this enables. 

As was noted above, the simulation of a full measurement 

campaign requires extended simulation times and yields huge 

amounts of data. To check the configuration of the setup, and 

its connection to our physical understanding of the process, a 

simple case was first modelled for which the AUT was moved 

only along θ, keeping polarization of the AUT fixed, i.e., not 

rotating along the AUT normal. The result of that simulation 

is shown in Fig. 2. Here, one can clearly see that the scatterer 

brings a very strong effect towards the boresight of the AUT 

when the AUT is rotated to approximately 45° from the 

original position and confirms that the scattering effects will 

be visible in the full measurement simulation. 

 

Fig. 2. Simulated far-field pattern cut for a single AUT θ-position showing 
the pattern is perturbed by the presence of the PEC scatterer. 

Fig. 3 presents the aggregated results of these simulation 

for three φ-cuts at θ = 60°, 63°, and 66° which constitutes a 

total of 360 individual full-wave MoM simulations. These 

cuts will be further used within the sparse sampling 

simulations. These cuts present far-field, polar-spherical gain 

patterns of the AUT as a function of the rotation around the 

normal of the AUT for fixed θ-positions, i.e., with φ = -180°, 

-177°, 174°…177°. Here, one can see how changing the 

orientation of AUT position affects radiation characteristic of 

antenna and simulates a classical, polar spherical, Eθ, Eφ 

measurement [1] where here the results are greatly impacted 

by the presence of the PEC scatterer. 

 

Fig. 3. Simulated far-field “measurement” results for three φ-cuts. 

IV. SPARSE SAMPLING SPHERICAL TRANSFORM 

Fig. 4 shows the sparsely sampled simulated measurement 

points that are used by the CS algorithm. Here, just 8% of the 

points what would be used by the full conventional equispaced 

spherical processing are required. These few samples are 

taken based on a cosine distribution of points in θ which varies 

from 0° to 90° where, for each θ point, we randomly select a 

φ point between -180° and +177°. This provides the necessary 

weighting with more samples placed in the region with greater 

field intensities around the spherical measurement pole, and 

which significantly improves the performance of the CS 

technique [7]. 

 

 

Fig. 4. Sparse spherical simulated “measured” data, top Eθ, bottom Eφ. 

As noted above, the first step in the classical processing is 

to decompose the measured fields onto Fourier coefficients by 

means of a two-dimensional Fourier transform [2]. Fig. 5a and 

b shows the two sets of Fourier coefficients, one for each 

orthogonal polarisation, which have been computed 

conventionally using a mixed-radix two-dimensional FFT [2]. 

By contrast, Fig. 5c and d, presents equivalent results only 
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here the Fourier coefficients have been computed using a CS 

based solver, cf. [8]. For the purposes of the CS recovery, it is 

the Fourier coefficients are the primary parameters of interest. 

The standard spherical near-field to far-field transform will 

take these recovered Fourier coefficients and map them onto 

spherical mode coefficients which are required to perform the 

spherical near-field to far-field transform and probe 

compensation [2]. 

To reduce the computational intensity and machine 

resources, a novel technique has been utilised that drastically 

reduces the size of the problem space. From inspection of Fig. 

5a and b we see that very little power is contained within a 

cruciform region of the Fourier domain. In the linear-algebra 

statement, we may therefore exclude this region and instead 

limit our domain to the region in which Fourier coefficients 

that are associated with the AUT and the parasitically coupled 

scatterer are expected to reside. It is however crucial to the 

success of the technique to include the parasitically coupled 

coefficients as failure to do so means that their power will be 

aliased back into the AUT modes invalidating the technique. 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Fourier coefficients computed by conventional spherical processing 

(a) and (b), and equivalent results obtained by CS processing (c) and (d). 

From inspection, we see that the agreement attained 

between those coefficients that were determined by 

employing a conventional Fourier transform, i.e. Fig. 5a and 

b are in very encouraging agreement with the equivalent 

results obtained by the CS solver, Fig. 5c and d. The next step 

in the standard spherical processing is to map these Fourier 

coefficients onto the spherical mode coefficients (SMC). Fig. 

6a and b contain SMC plots for the TE and TM mode sets that 

were obtained using the standard processing. Conversely, Fig. 

6c and d contain equivalent SMC plots that were obtained by 

mapping the CS derived Fourier coefficients onto SMCs. 

Here, the θ component Fourier coefficients are mapped onto 

the Q2 SMCs and the φ component Fourier coefficients are 

mapped onto the Q1 SMCs. Again, the agreement is very 

encouraging. In both cases the higher order modes that are 

associated with the parasitically coupled scatterer have been 

filtered out from these results leaving just those lower order 

AUT modes [1, 3]. 

  
(a) (b) 

  
(c) (d) 

Fig. 6. Spherical mode coefficients computed by mapping the Fourier 

coefficients onto the SMCs using standard spherical processing (a) and (b), 

and CS based processing (c) and (d). 

The final step in the processing is to compute the 

equivalent, filtered, far-fields from the SMCs [2]. The far-field 

results can be seen presented below in Fig. 7. Fig. 7a and b 

contain the far-field co-polar and cross-polar Ludwig 3 [1] 

amplitude pattern of the unperturbed 3.5 GHz array antenna 

when tabulated on a regular azimuth over elevation coordinate 

system [1] and presented as a false colour checkerboard plot. 

Conversely, Fig. 7c and d contain equivalent plots for the case 

where the PEC reflecting plate has been introduced into the 

simulated “measurement” of the array antenna. Here we see 

the presence of very large spurious sidelobes, which are 

evident in both the co-polar and cross-polar patterns, which 

are a result of the very large specular reflection of the antenna 

in the PEC plate. Fig 7e and f contain the conventional 

reflection supressed, i.e., mode filtered, far-field as obtained 

from using classical, that is to say non-CS, spherical 

processing [1]. Here, we see that the large amplitude spurious 

sidelobes have been greatly reduced, as is expected. Finally, 

Fig. 7g and h contain equivalent results for the novel CS based 

reflection suppression which are in close agreement with the 

results obtained from using classical spherical mode filtering. 

When interpreting these results, it is important to recognise 

that, as a consequence of limited processing time, “measured” 

spherical data was only available out to 60° in θ meaning that 

azimuth and elevation pattern angles larger than ±60° may be 

disregards as any fields outside of this range will differ from 
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the true far-field antenna pattern by virtue of the first order 

truncation effect [1]. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 7. Co-polar and cross-polar far-fields of the AUT obtained directly 

from the full wave solver in the absence of the scatterer (a) and (b); 
equivalent results in the presence of the PEC scatterer (c) and (d); spherical 

mode filtered far-field obtained using classical spherical mode filtering (e) 

and (f); and spherical mode filtered far-field obtained using CS based 
spherical mode filtering (g) and (h). 

It is worth noting here that a wealth of experimental data 

exists that attests to the effectiveness of the underlying mode-

filtering based reflection suppression technique, cf. [1], and 

thus here we have largely focused our attention on the CS 

recovery of the two-dimensional Fourier coefficients which is 

novel. 

V. CONCLUSIONS 

In this paper, we present the application of Compressed 

Sensing to spherical mode filtering for the first time. The 

primary objective was to effectively suppress spurious 

reflections in two-dimensional far-field antenna pattern 

measurements while significantly relaxing the sampling 

requirements. In this work we have demonstrated that even 

with sub-Nyquist sampling and data collected on a highly 

irregular grid, accurate antenna patterns can be recovered 

through sophisticated modern CS based post-processing 

techniques. This significantly broadens the applicability of the 

mode filtering approach, as it allows for reduced data 

acquisition time and relaxed positional equipment accuracy. 

This initial proof of concept shows very similar levels of 

performance to classical spherical mode-filtering based 

reflection suppression using just 8% of the number of 

measurement points required by classical equiangular Nyquist 

sampling providing a very significant reduction in terms of 

measurement time and a great deal of resilience to range 

reflections. Clearly, this is an ongoing research programme 

with the future work to include further verification by means 

of a detailed statistical analysis. Lastly, this is the first time 

that the NIST Fourier spherical algorithm has been harnessed 

for spherical processing with prior CS based spherical 

processing taking an equally valid, but different approach, 

e.g., [7, 9,]. 
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